Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rong Ji is active.

Publication


Featured researches published by Rong Ji.


Water Research | 2013

Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes

Ning-Xin Wang; Yan Li; Xi-Hai Deng; Ai-Jun Miao; Rong Ji; Liuyan Yang

In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation.


Soil Biology & Biochemistry | 2000

Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites.

Rong Ji; Andreas Kappler; Andreas Brune

The majority of termite species are considered to be humivorous, but the exact nature of their carbon and energy source, the mechanisms involved in digestion and the impact of this feeding habit on the humification of soil organic matter are largely obscure. We performed feeding trials with soil-feeding termites (Termitidae: Termitinae), using 14 C-labeled humic model compounds as substrates. In the case of Cubitermes orthognathus, the components of chemically identical synthetic humic acids (HA), labeled either in their proteinaceous or aromatic building blocks, and synthetic fulvic acids (FA), labeled in the aromatic building blocks, all had similarly low mineralization rates (2.5, 2.2 and 2.7%, respectively) when incubated in soil for 10 days in the absence of termites. When termites were present, the mineralization rate of the aromatic component of HA and FA increased only slightly but significantly (2.4 and 3.1%, respectively; P < 0.05), whereas that of the proteinaceous component increased more than 10-fold (30.8%). Similar results were obtained when the protein was peptonized prior to polymerization (9.7 vs. 27.4% mineralization). Mineralization of HA was accompanied by a transformation of the residual peptide label to FA, whereas the aromatic label of HA and FA was partly transformed to humin during gut passage. High-performance gel permeation chromatography showed a strong shift in the size-class distribution of peptide label towards low-molecular-weight products, especially of the material ingested by the termites; the smallest molecules were recovered from the termite bodies. Similar results were obtained in feeding trials with Cubitermes umbratus and Thoracotermes macrothorax. Together with previous findings, the current results provide strong evidence that during gut passage, the combined action of extreme alkalinity in the anterior hindgut, autoxidative processes, and probably also proteolytic activities, renders a large reservoir of potential substrates accessible. While peptidic components of humic substances are selectively digested, aromatic components are apparently not an important food source for soil-feeding termites. These findings have important implications for the mobilization of organic nitrogen in tropical soils. 7 2000 Elsevier Science Ltd. All rights reserved.


Plant Physiology and Biochemistry | 2017

Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects.

Wenchao Du; Wenjuan Tan; Jose R. Peralta-Videa; Jorge L. Gardea-Torresdey; Rong Ji; Ying Yin; Hongyan Guo

Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered.


Environmental Science & Technology | 2013

Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation.

Jie Liu; Yongfeng Wang; Bingqi Jiang; Lianhong Wang; Jianqiu Chen; Hongyan Guo; Rong Ji

Tetrabromobisphenol A (TBBPA) is one of the most commonly used flame retardants and has become an environmental contaminant worldwide. We studied the fate of (14)C-labeled TBBPA in soil under static anoxic (195 days) and sequential anoxic (125 days)-oxic (70 days) conditions. During anoxic incubation, TBBPA dissipated with a half-life of 36 days, yielding four debromination metabolites: bisphenol A (BPA) and mono-, di-, and tribrominated BPA. At the end of anoxic incubation, all four brominated BPAs completely disappeared, leaving BPA (54% of initial TBBPA) as the sole detectable organic metabolite. TBBPA dissipation was accompanied by trace mineralization (<1.3%) and substantial bound-residue formation (35%), probably owing to chemical binding to soil organic matter. Subsequent oxic incubation was effective in degrading accumulated BPA (half-life 11 days) through mineralization (6%) and bound-residue formation (62%). However, 42% of the anoxically formed bound residues was released as TBBPA and lower brominated BPAs, which were then persistent during oxic incubation. Our results provide the first evidence for release of bound residues during alteration of the redox environment and indicate that sequential anoxic-oxic incubation approaches-considered effective in remediation of environments containing halogenated xenobiotics-do not completely remove xenobiotics from environmental matrices.


Chemosphere | 2010

Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.

Muxian Jiang; Lianhong Wang; Rong Ji

Cephalosporins are widely used veterinary and human antibiotics, but their environmental fate and impacts are still unclear. We studied degradation of four cephalosporins (cefradine, cefuroxime, ceftriaxone, and cefepime) from each generation in the surface water and sediment of Lake Xuanwu, China. The four cephalosporins degraded abiotically in the surface water in the dark with half-lives of 2.7-18.7d, which were almost the same as that in sterilized surface water. Under exposure to simulated sunlight, the half-lives of the cephalosporins decreased significantly to 2.2-5.0d, with the maximal decrease for ceftriaxone from 18.7d in the dark to 4.1d under the light exposure. Effects of dissolved organic matter (DOM) and nitrate on photodegradation of the cephalosporins were compound-specific. While DOM (5 mg L(-1)) stimulated the photodegradation of only cefradine (by 9%) and cefepime (by 34%), nitrate (10 microM) had effects only on cefepime (stimulation by 13%). Elimination rates of the cephalosporins in oxic sediment (half-lives of 0.8-3.1d) were higher than in anoxic sediment (half-lives of 1.1-4.1d), mainly attributed to biodegradation. The data indicate that abiotic hydrolysis (for cefradine, cefuroxime, and cefepime) and direct photolysis (for ceftriaxone) were the primary processes for elimination of the cephalosporins in the surface water of the lake, whereas biodegradation was responsible for the elimination of the cephalosporins in the sediment. Further studies are needed on chemical structure, toxicity, and persistence of transformation products of the cephalosporins in the environment.


Environmental Science and Pollution Research | 2013

Solution by dilution?—A review on the pollution status of the Yangtze River

Tilman Floehr; Hongxia Xiao; Björn Scholz-Starke; Lingling Wu; Junli Hou; Daqiang Yin; Xiaowei Zhang; Rong Ji; Xingzhong Yuan; Richard Ottermanns; Martina Roß-Nickoll; Andreas Schäffer; Henner Hollert

The Yangtze River has been a source of life and prosperity for the Chinese people for centuries and is a habitat for a remarkable variety of aquatic species. But the river suffers from huge amounts of urban sewage, agricultural effluents, and industrial wastewater as well as ship navigation wastes along its course. With respect to the vast amounts of water and sediments discharged by the Yangtze River, it is reasonable to ask whether the pollution problem may be solved by simple dilution. This article reviews the past two decades of published research on organic pollutants in the Yangtze River and several adjacent water bodies connected to the main stream, according to a holistic approach. Organic pollutant levels and potential effects of water and sediments on wildlife and humans, measured in vitro, in vivo, and in situ, were critically reviewed. The contamination with organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans, polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and others, of water and sediment along the river was described. Especially Wuhan section and the Yangtze Estuary exhibited stronger pollution than other sections. Bioassays, displaying predominantly the endpoints mutagenicity and endocrine disruption, applied at sediments, drinking water, and surface water indicated a potential health risk in several areas. Aquatic organisms exhibited detectable concentrations of toxic compounds like PCBs, OCPs, PBDEs, and PFCs. Genotoxic effects could also be assessed in situ in fish. To summarize, it can be stated that dilution reduces the ecotoxicological risk in the Yangtze River, but does not eliminate it. Keeping in mind an approximately 14 times greater water discharge compared to the major European river Rhine, the absolute pollution mass transfer of the Yangtze River is of severe concern for the environmental quality of its estuary and the East China Sea. Based on the review, further research needs have been identified.


Environmental Science & Technology | 2015

Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study

Wenchao Du; Jorge L. Gardea-Torresdey; Rong Ji; Ying Yin; Jianguo Zhu; Jose R. Peralta-Videa; Hongyan Guo

Interactions of nCeO2 with plants have been mostly evaluated at seedling stage and under controlled conditions. In this study, the effects of nCeO2 at 0 (control), 100 (low), and 400 (high) mg/kg were monitored for the entire life cycle (about 7 months) of wheat plants grown in a field lysimeter. Results showed that at high concentration nCeO2 decreased the chlorophyll content and increased catalase and superoxide dismutase activities, compared with control. Both concentrations changed root and leaf cell microstructures by agglomerating chromatin in nuclei, delaying flowering by 1 week, and reduced the size of starch grains in endosperm. Exposed to low concentration produced embryos with larger vacuoles, while exposure to high concentration reduced number of vacuoles, compared with control. There were no effects on the final biomass and yield, Ce concentration in shoots, as well as sugar and starch contents in grains, but grain protein increased by 24.8% and 32.6% at 100 and 400 mg/kg, respectively. Results suggest that more field life cycle studies are needed in order to better understand the effects of nCeO2 in crop plants.


Environmental Science & Technology | 2011

Isomer-Specific Degradation of Branched and Linear 4-Nonylphenol Isomers in an Oxic Soil

Jun Shan; Bingqi Jiang; Bin Yu; Chengliang Li; Yuanyuan Sun; Hongyan Guo; Jichun Wu; Erwin Klumpp; Andreas Schäffer; Rong Ji

Using (14)C- and (13)C-ring-labeling, degradation of five p-nonylphenol (4-NP) isomers including four branched (4-NP(38), 4-NP(65), 4-NP(111), and 4-NP(112)) and one linear (4-NP(1)) isomers in a rice paddy soil was studied under oxic conditions. Degradation followed an availability-adjusted first-order kinetics with the decreasing order of half-life 4-NP(111) (10.3 days) > 4-NP(112) (8.4 days) > 4-NP(65) (5.8 days) > 4-NP(38) (2.1 days) > 4-NP(1) (1.4 days), which is in agreement with the order of their reported estrogenicities. One metabolite of 4-NP(111) with less polarity than the parent compound occurred rapidly and remained stable in the soil. At the end of incubation (58 days), bound residues of 4-NP(111) amounted to 54% of the initially applied radioactivity and resided almost exclusively in the humin fraction of soil organic matter, in which chemically humin-bound residues increased over incubation. Our results indicate an increase of specific estrogenicity of the remaining 4-NPs in soil as a result of the isomer-specific degradation and therefore underline the importance of understanding the individual fate (including degradation, metabolism, and bound-residue formation) of isomers for risk assessment of 4-NPs in soil. 4-NP(1) should not be used as a representative of 4-NPs for studies on their environmental behavior.


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2008

Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic

Burkhard Schmidt; Jürgen Ebert; Marc Lamshöft; Brigitte Thiede; Ramona Schumacher-Buffel; Rong Ji; Philippe F.-X. Corvini; Andreas Schäffer

The fate of 14C-labeled sulfadiazine (14C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (Ap horizon of loamy sand, orthic luvisol; Ap horizon of silt loam, cambisol) amended with fresh and aged (6 months) 14C-manure [40 g kg−1 of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with 14C-SDZ. Mineralization of 14C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable 14C (ethanol-water, 9:1, v/v) decreased with time to 4–13% after 218 days of incubation with fresh and aged 14C-manure and both soils. Non-extractable residues were the main route of the fate of the 14C-SDZ residues (above 90% of total recovered 14C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the 14C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl2 solution) also decreased with increasing incubation period (5–7% after 218 days). Due to thin-layer chromatography (TLC), 500 μg of 14C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh 14C-manure, and about 50 μg kg−1 after 218 days. Bioavailable 14C-SDZ portions present in the CaCl2 extracts were about 350 μg kg−1 with amendment. Higher concentrations were initially detected with aged 14C-manure (ethanol-water extracts: 1,920 μg kg−1; CaCl2 extracts: 1,020 μg kg−1), probably due to release of 14C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the 14C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble 14C-SDZ residues contained in 14C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZs non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.


Environmental Science & Technology | 2010

Bioaccumulation and Bound-Residue Formation of a Branched 4-Nonylphenol Isomer in the Geophagous Earthworm Metaphire guillelmi in a Rice Paddy Soil

Jun Shan; Ting Wang; Chengliang Li; Erwin Klumpp; Rong Ji

Nonylphenols (NPs) are the breakdown products of the nonionic surfactants nonylphenol ethoxylates and are toxic pollutants. Here we studied the bioaccumulation, elimination, and biotransformation of NP (12.3 mg kg(-1) soil dry weight) in a typical Chinese geophagous earthworm, Metaphire guillelmi, in a rice paddy soil, using 4-[1-ethyl-1,3-dimethylpentyl]phenol (4-NP(111)), the main constitute of technical NP, radiolabeled with (14)C. Earthworms rapidly bioaccumulated (14)C-4-NP(111) following a two-compartment first-order kinetics model. At steady state (after 20 days exposure), the normalized biota-soil accumulation factor amounted to 120, and 77% of the accumulated radioactivity were present as nonextractable bound residues. The total radioactivity was eliminated from the earthworm following an availability-adjusted decay model and controlled by the elimination rate of the bound residues (half-life = 22.6 days). The extractable residues consisted mainly of one less-polar metabolite (37%) and polar compounds (50%), including glucuronide conjugates of 4-NP(111) and the metabolite; and free 4-NP(111) accounted for only 9% of the total extractable residues. This study provides the first results of the toxicokinetics and biotransformation of 4-NP in a terrestrial organism, and underlines the significant underestimation of the bioaccumulation and risk assessment based only on free NP in earthworms.

Collaboration


Dive into the Rong Ji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge