Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongan Zhang is active.

Publication


Featured researches published by Rongan Zhang.


European Journal of Pharmacology | 1995

Functional role of endothelin ETA and ETB receptors in venous and arterial smooth muscle

Nicholas J. Lodge; Rongan Zhang; Nelly N. Halaka; Suzanne Moreland

The functional importance of endothelin ETA and ETB receptors in selected arterial and venous smooth muscle preparations was characterized. Endothelin-1 induced force in the saphenous and jugular veins is normally mediated by endothelin ETB-like receptors. However, desensitization or pharmacological block of these receptors reveals an endothelin ETA receptor population that is of sufficient size to mediate full endothelin-1-evoked force. Block of either endothelin ETA or endothelin ETB receptors alone is insufficient to antagonize endothelin-1-evoked force in saphenous vein. Endothelin-1-induced force in hamster aorta may also be mediated by activation of both endothelin ETA and ETB receptors. However, activation of endothelin ETB-like receptors alone is insufficient to generate a full endothelin-1 response. Sarafotoxin S6c treatment, to desensitize endothelin ETB receptors, failed to affect the responses of rat aorta and rabbit carotid artery to endothelin-1 or endothelin ETA receptor antagonists. These findings indicate that selective endothelin receptor antagonists will vary enormously in their efficacy against endothelin-induced force in different vascular beds.


Journal of Medicinal Chemistry | 2008

(3R,5S,E)-7-(4-(4-Fluorophenyl)-6-isopropyl-2-(methyl(1-methyl-1H-1,2,4-triazol-5-yl)amino)pyrimidin-5-yl)-3,5-dihydroxyhept-6-enoic Acid (BMS-644950): A Rationally Designed Orally Efficacious 3-Hydroxy-3-methylglutaryl Coenzyme-A Reductase Inhibitor with Reduced Myotoxicity Potential

Saleem Ahmad; Cort S. Madsen; Philip D. Stein; Evan B. Janovitz; Christine Huang; Khehyong Ngu; Sharon N. Bisaha; Lawrence J. Kennedy; Bang-Chi Chen; Rulin Zhao; Doree Sitkoff; Hossain Monshizadegan; Xiaohong Yin; Carol S. Ryan; Rongan Zhang; Mary R. Giancarli; Eileen Bird; Ming Chang; Xing Chen; Robert Setters; Debra Search; Shaobin Zhuang; Van Nguyen-Tran; Carolyn A. Cuff; Thomas Harrity; Celia D'Arienzo; Tong Li; Richard A. Reeves; Michael A. Blanar; Joel C. Barrish

3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR) inhibitors, more commonly known as statins, represent the gold standard in treating hypercholesterolemia. Although statins are regarded as generally safe, they are known to cause myopathy and, in rare cases, rhabdomyolysis. Statin-dependent effects on plasma lipids are mediated through the inhibition of HMGR in the hepatocyte, whereas evidence suggests that myotoxicity is due to inhibition of HMGR within the myocyte. Thus, an inhibitor with increased selectivity for hepatocytes could potentially result in an improved therapeutic window. Implementation of a strategy that focused on in vitro potency, compound polarity, cell selectivity, and oral absorption, followed by extensive efficacy and safety modeling in guinea pig and rat, resulted in the identification of compound 1b (BMS-644950). Using this discovery pathway, we compared 1b to other marketed statins to demonstrate its outstanding efficacy and safety profile. With the potential to generate an excellent therapeutic window, 1b was advanced into clinical development.


Journal of Pharmacology and Experimental Therapeutics | 2008

Novel Peroxisome Proliferator-Activated Receptor α Agonists Lower Low-Density Lipoprotein and Triglycerides, Raise High-Density Lipoprotein, and Synergistically Increase Cholesterol Excretion with a Liver X Receptor Agonist

Ranjan Mukherjee; Kenneth T. Locke; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Rongan Zhang; Debra Search; Denise Grimm; Michael Flynn; Kevin M. O'Malley; Litao Zhang; Jun Li; Yan Shi; Lawrence J. Kennedy; Michael A. Blanar; Peter T. W. Cheng; Joseph A. Tino; Rai Ajit Srivastava

The first generation peroxisome proliferator-activated receptor (PPAR) α agonist gemfibrozil reduces the risk of major cardiovascular events; therefore, more potent PPARα agonists for the treatment of cardiovascular diseases have been actively sought. We describe two novel, potent oxybenzylglycine PPARα-selective agonists, BMS-687453 [N-[[3-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]phenyl]methyl]-N-(methoxycarbonyl)-glycine] and BMS-711939 N-[[5-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]-2-fluorophenyl]methyl]-N-(methoxycarbonyl)-glycine], that robustly increase apolipoprotein (Apo) A1 and high-density lipoprotein cholesterol in human ApoA1 transgenic mice and lower low-density lipoprotein-cholesterol and triglycerides in fat-fed hamsters. These compounds have much lower potency against mouse PPARα than human PPARα; therefore, they were tested in PPARα-humanized mice that do not express murine PPARα but express human PPARα selectively in the liver. We developed hepatic gene induction as a novel biomarker for efficacy and demonstrate hepatic gene induction at very low doses of these compounds. BMS-711939 induces fecal cholesterol excretion, which is further increased upon cotreatment with a liver X receptor (LXR) agonist. It is surprising that this synergistic increase upon coadministration is also observed in mice that express PPARα in the liver only. BMS-711939 also prevented the LXR agonist-induced elevation of serum triglycerides. Such PPARα agonists could be attractive candidates to explore for the treatment of cardiovascular diseases, especially in combination with a suitable LXR agonist.


Journal of Medicinal Chemistry | 2010

Discovery of an oxybenzylglycine based peroxisome proliferator activated receptor alpha selective agonist 2-((3-((2-(4-chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic acid (BMS-687453).

Jun Li; Lawrence J. Kennedy; Yan Shi; Shiwei Tao; Xiang-Yang Ye; Stephanie Y. Chen; Ying Wang; Andres S. Hernandez; Wei Wang; Pratik Devasthale; Sean Chen; Zhi Lai; Hao Zhang; Shung Wu; Rebecca A. Smirk; Scott A. Bolton; Denis E. Ryono; Huiping Zhang; Ngiap-Kie Lim; Bang-Chi Chen; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Rai Ajit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Cell Metabolism | 2016

Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils

Todd G. Kirchgessner; Paul G. Sleph; Jacek Ostrowski; John A. Lupisella; Carol S. Ryan; Xiaoqin Liu; Gayani Fernando; Denise Grimm; Petia Shipkova; Rongan Zhang; Ricardo A. Garcia; Jun Zhu; Aiqing He; Harold Malone; Richard Martin; Kamelia Behnia; Zhaoqing Wang; Yu Chen Barrett; Robert J. Garmise; Long Yuan; Jane Zhang; Mohit D. Gandhi; Philip Wastall; Tong Li; Shuyan Du; Lisa Salvador; Raju Mohan; Glenn H. Cantor; Ellen K. Kick; John Lee

The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRβ-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.


PLOS ONE | 2013

11β-Hydroxysteroid Dehydrogenase Type 1 Gene Knockout Attenuates Atherosclerosis and In Vivo Foam Cell Formation in Hyperlipidemic apoE−/− Mice

Ricardo A. Garcia; Debra Search; John A. Lupisella; Jacek Ostrowski; Bo Guan; Jian Chen; Wen-Pin Yang; Amy Truong; Aiqing He; Rongan Zhang; Mujing Yan; Samuel E. Hellings; Peter S. Gargalovic; Carol S. Ryan; Linda Watson; Robert Langish; Petia Shipkova; Nancy L. Carson; Joseph R. Taylor; Richard Yang; George C. Psaltis; Thomas Harrity; Jeffrey A. Robl; David A. Gordon

Background Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. Methodology/Principal Findings To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE−/− background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1−/−/apoE−/− mice vs. 11βHSD1+/+/apoE−/− mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1−/−/apoE−/− mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1−/−/apoE−/− mice. Bone marrow transplantation from 11βHSD1−/−/apoE−/− mice into apoE−/− recipients reduced plaque area 39–46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1+/+/apoE−/− and 11βHSD1−/−/apoE−/− mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1−/−/apoE−/− mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11βHSD1−/−/apoE−/− mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1−/−/apoE−/−-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. Conclusions These findings suggest that 11βHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11βHSD1 in modulating binding of pro-atherogenic TLR ligands.


European Journal of Pharmacology | 1996

Characterization of thromboxane A2/prostaglandin endoperoxide receptors in aorta

Rongan Zhang; Martin L. Ogletree; Suzanne Moreland

Thromboxane A2/prostaglandin endoperoxide receptor antagonists were studied in rat and guinea-pig aortas contracted with U-46619 (9,11-dideoxy-11 alpha,9 alpha-epoxymethanoprostaglandin F2 alpha) or 8-epi-prostaglandin F2 alpha. In rat aorta, the antagonists competitively inhibited contractions evoked by either agonist with a rank order of potency as follows: BMS-180291 ([1s-(exo,exo)]-2-[[3-[4-[(pentylamino) carbonyl]-2-oxazolyl]-7-oxabicyclo[2.2.1]hept-2-yl]methyl]-benz enepropanoic acid) > or = SQ 29,548 ([1s-[1 alpha,2 beta-(5z), 3 beta,4 alpha)]-7-[3-[[2-[(phenylamino)carbonyl]hydrozino] methyl]-7-oxobicyclo-[2.2.1]hept-2-yl]-5-heptanoic acid) > daltroban (4-[2-(4-chlorobenzenesulfonylamino) methyl]-benzene acetic acid) > or = SQ 30,741 ([1s-[1 beta,2 alpha(5z),3 alpha,4 beta]]-7-[3-[[[[(oxa)amino]acetyl] amino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl-5-heptanoic acid) = AA-2414 (2,4,5-trimethyl-3,6-dioxo-zeta-phenyl-1,4-cyclohexadien-1-heptano ic acid). In guinea-pig aorta, the antagonists competitively antagonized contractions elicited by either agonist with the following rank order of potency: SQ 29,548 = AA-2414 > or = SQ 30,741 > daltroban. Antagonism by BMS-180291 in guinea-pig aorta was not strictly competitive. These findings indicate that thromboxane A2/prostaglandin endoperoxide receptors in rat aortas are different from those in guinea pigs. Because the actions of both agonists were equivalently antagonized by each of the antagonists in both rat and guinea-pig aortas, the results do not support the hypothesis that U-46619 and 8-epi-prostaglandin F2 alpha elicit contractions via different receptor subtypes in the aorta.


PLOS ONE | 2014

P2Y6 receptor potentiates pro-inflammatory responses in macrophages and exhibits differential roles in atherosclerotic lesion development.

Ricardo A. Garcia; Mujing Yan; Debra Search; Rongan Zhang; Nancy L. Carson; Carol S. Ryan; Constance Smith-Monroy; Joanna Zheng; Jian Chen; Yan Kong; Huaping Tang; Samuel E. Hellings; Judith Wardwell-Swanson; Joseph E. Dinchuk; George C. Psaltis; David A. Gordon; Peter W. Glunz; Peter S. Gargalovic

Background P2Y6, a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y6 deficiency on atherosclerosis. Methodology/Principal Findings Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y6 receptors, showed that exogenous expression of P2Y6 induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y6-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y6 and in acute peritonitis models of inflammation. To evaluate the role of P2Y6 in atherosclerotic lesion development, we used P2Y6-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y6 receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y6xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y6 deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. Conclusions P2Y6 receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y6 deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y6 in vascular disease pathophysiologies, such as aneurysm formation.


Journal of Pharmacology and Experimental Therapeutics | 2007

The Guinea Pig as a Preclinical Model for Demonstrating the Efficacy and Safety of Statins

Cort S. Madsen; Evan B. Janovitz; Rongan Zhang; Van Nguyen-Tran; Carol S. Ryan; Xiaohong Yin; Hossain Monshizadegan; Ming Chang; Celia D'Arienzo; Susan Scheer; Robert Setters; Debra Search; Xing Chen; Shaobin Zhuang; Lori Kunselman; Andrew Peters; Thomas Harrity; Atsu Apedo; Christine Huang; Carolyn A. Cuff; Mark C. Kowala; Michael A. Blanar; Chongqing Sun; Jeffrey A. Robl; Philip D. Stein

Statins, because of their excellent efficacy and manageable safety profile, represent a key component in the current armamentarium for the treatment of hypercholesterolemia. Nonetheless, myopathy remains a safety concern for this important drug class. Cerivastatin was withdrawn from the market for myotoxicity safety concerns. BMS-423526 [{(3R,5S)-7-[4-(4-fluorophenyl)-6,7-dihydro-2-(1-methylethyl)-5H-benzo[6,7]cyclohepta[1,2-b]pyridin-3-yl]-3,5-dihydroxy-heptenoic acid} sodium salt], similar to cerivastatin in potency and lipophilicity, was terminated in early clinical development due to an unacceptable myotoxicity profile. In this report, we describe the guinea pig as a model of statin-induced cholesterol lowering and myotoxicity and show that this model can distinguish statins with unacceptable myotoxicity profiles from statins with acceptable safety profiles. In our guinea pig model, both cerivastatin and BMS-423526 induced myotoxicity at doses near the ED50 for total cholesterol (TC) lowering in plasma. In contrast, wide differences between myotoxic and TC-lowering doses were established for the currently marketed, more hydrophilic statins, pravastatin, rosuvastatin, and atorvastatin. This in vivo model compared favorably to an in vitro model, which used statin inhibition of cholesterol synthesis in rat hepatocytes and L6 myoblasts as surrogates of potential efficacy and toxicity, respectively. Our conclusion is that the guinea pig is a useful preclinical in vivo model for demonstrating whether a statin is likely to have an acceptable therapeutic safety margin.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and structure–activity relationships of 2-aryl-4-oxazolylmethoxy benzylglycines and 2-aryl-4-thiazolylmethoxy benzylglycines as novel, potent PPARα selective activators- PPARα and PPARγ selectivity modulation

Xiang-Yang Ye; Stephanie Y. Chen; Hao Zhang; Kenneth T. Locke; Kevin O’Malley; Litao Zhang; Raijit Srivastava; Bowman Miao; Daniel Meyers; Hossain Monshizadegan; Debra Search; Denise Grimm; Rongan Zhang; Jonathan Lippy; Celeste Twamley; Jodi K. Muckelbauer; Chiehying Chang; Yongmi An; Vinayak Hosagrahara; Lisa Zhang; T.-J. Yang; Ranjan Mukherjee; Peter T. W. Cheng; Joseph A. Tino

The synthesis and follow-up SAR studies of our development candidate 1 by incorporating 2-aryl-4-oxazolylmethoxy and 2-aryl-4-thiazolylmethoxy moieties into the oxybenzylglycine framework of the PPARalpha/gamma dual agonist muraglitazar is described. SAR studies indicate that different substituents on the aryloxazole/thiazole moieties as well as the choice of carbamate substituent on the glycine moiety can significantly modulate the selectivity of PPARalpha versus PPARgamma. Potent, highly selective PPARalpha activators 2a and 2l, as well as PPARalpha activators with significant PPARgamma activity, such as 2s, were identified. The in vivo pharmacology of these compounds in preclinical animal models as well as their ADME profiles are discussed.

Collaboration


Dive into the Rongan Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge