Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongfeng Li is active.

Publication


Featured researches published by Rongfeng Li.


Journal of Genetics and Genomics | 2015

Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting

Fengjiao Chen; Ying Wang; Yilin Yuan; Wei Zhang; Zijian Ren; Yong Jin; Xiaorui Liu; Qiang Xiong; Qin Chen; Manling Zhang; Xiaokang Li; Lihua Zhao; Ze Li; Zhaoqiang Wu; Yanfei Zhang; Feifei Hu; Juan Huang; Rongfeng Li; Yifan Dai

Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the JH region of the pig IgM heavy chain gene which is crucial for B cell development and differentiation. Transfection of IgM-targeting Cas9 plasmid in primary porcine fetal fibroblasts (PFFs) enabled inducing gene knock out (KO) in up to 53.3% of colonies analyzed, a quarter of which harbored biallelic modification, which was much higher than that of the traditional homologous recombination (HR). With the aid of somatic cell nuclear transfer (SCNT) technology, three piglets with the biallelic IgM heavy chain gene mutation were produced. The piglets showed no antibody-producing B cells which indicated that the biallelic mutation of the IgM heavy chain gene effectively knocked out the function of the IgM and resulted in a B cell-deficient phenotype. Our study suggests that the CRISPR/Cas9 system combined with SCNT technology is an efficient genome-editing approach in pigs.


Scientific Reports | 2016

Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos

Daorong Hou; Yong Jin; Xiaowei Nie; Manling Zhang; Na Ta; Lihua Zhao; Ning Yang; Yuan Chen; Zhaoqiang Wu; Hai-Bin Jiang; Yan-Ru Li; Qing-Yuan Sun; Yifan Dai; Rongfeng Li

Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established.


Stem Cells and Development | 2014

Establishment of bovine trophoblast stem-Like cells from In vitro-produced blastocyst-stage embryos using two inhibitors.

Xianghua Huang; Xuejie Han; Borjigin Uyunbilig; Manling Zhang; Shuguang Duo; Yongchun Zuo; Yuhang Zhao; Ting Yun; Dapeng Tai; Chen Wang; Jinhua Li; Xueling Li; Rongfeng Li

The trophoblast (TR) is the first to differentiate during mammalian embryogenesis and play a pivotal role in the development of the placenta. We used a dual inhibitor system (PD0325901 and CHIR99021) with mixed feeders to successfully obtain bovine trophoblast stem-like (bTS) cells, which were similar in phenotype to mouse trophoblast stem cells (TSCs). The bTS cells that were generated using this system continually proliferated, displayed a normal diploid karyotype, and had no signs of altered morphology or differentiation even after 150 passages. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers, such as OCT4, NANOG, SOX2, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81, and TR lineage markers such as CDX2, as determined by both immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Additionally, these cells generated dome-like structures, formed teratomas when injected into NOD-SCID mice, and differentiated into placenta TR cells in vitro. The microarray analysis of bTS cells showed high expression levels of many TR markers, such as TEAD4, EOMES, GATA3, ETS2, TFAP2A, ELF5, SMARCA4 (BRG1), CDH3, MASH2, HSD17B1, CYP11A1, PPARG, ID2, GCM1, HAND1, TDK, PAG, IFN-τ, and THAP11. The expression of many pluripotency markers, such as OCT4, SOX2, NANOG, and GDF3, was lower in bTS cells compared with in vitro-produced blastocysts; however, compared with bovine fetal fibroblasts, the expression of these pluripotency markers was elevated in bTS cells. The DNA methylation status of the promoter regions of OCT4, NANOG, and SOX2 was investigated, which were significantly higher in bTS cells (OCT4 23.90%, NANOG 74.40%, and SOX2 8.50%) compared with blastocysts (OCT4 8.90%, NANOG 34.4%, and SOX2 3.80%). In contrast, two promoter regions of CDX2 were hypomethylated in bTS cells (13.80% and 3.90%) compared with blastocysts (18.80% and 9.10%). The TSC lines that were established in this study may be used either for basic research that is focused on peri-implantation and placenta development or as donor cells for transgenic animal production.


Scientific Reports | 2017

Generation of complement protein C3 deficient pigs by CRISPR/Cas9-mediated gene targeting

Wei Zhang; Guan Wang; Ying Wang; Yong Jin; Lihua Zhao; Qiang Xiong; Lining Zhang; Lisha Mou; Rongfeng Li; Haiyuan Yang; Yifan Dai

Complement protein C3 is the pivotal component of the complement system. Previous studies have demonstrated that C3 has implications in various human diseases and exerts profound functions under certain conditions. However, the delineation of pathological and physiological roles of C3 has been hampered by the insufficiency of suitable animal models. In the present study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the C3 gene in porcine fetal fibroblasts. Our results indicated that CRISPR/Cas9 targeting efficiency was as high as 84.7%, and the biallelic mutation efficiency reached at 45.7%. The biallelic modified colonies were used as donor for somatic cell nuclear transfer (SCNT) technology to generate C3 targeted piglets. A total of 19 C3 knockout (KO) piglets were produced and their plasma C3 protein was undetectable by western blot analysis and ELISA. The hemolytic complement activity and complement-dependent cytotoxicity assay further confirmed that C3 was disrupted in these piglets. These C3 KO pigs could be utilized as a valuable large animal model for the elucidation of the roles of C3.


PLOS ONE | 2015

The Efficient Derivation of Trophoblast Cells from Porcine In Vitro Fertilized and Parthenogenetic Blastocysts and Culture with ROCK Inhibitor Y-27632

Dongxia Hou; Min Su; Xiawei Li; Zhiying Li; Ting Yun; Yuhang Zhao; Manling Zhang; Lihua Zhao; Rongfeng Li; Haiquan Yu; Xueling Li

Trophoblasts (TR) are specialized cells of the placenta and play an important role in embryo implantation. The in vitro culture of trophoblasts provided an important tool to investigate the mechanisms of implantation. In the present study, porcine trophoblast cells were derived from pig in vitro fertilized (IVF) and parthenogenetically activated (PA) blastocysts via culturing in medium supplemented with KnockOut serum replacement (KOSR) and basic fibroblast growth factor (bFGF) on STO feeder layers, and the effect of ROCK (Rho-associated coiled-coil protein kinases) inhibiter Y-27632 on the cell lines culture was tested. 5 PA blastocyst derived cell lines and 2 IVF blastocyst derived cell lines have been cultured more than 20 passages; one PA cell lines reached 110 passages without obvious morphological alteration. The derived trophoblast cells exhibited epithelium-like morphology, rich in lipid droplets, and had obvious defined boundaries with the feeder cells. The cells were histochemically stained positive for alkaline phosphatase. The expression of TR lineage markers, such as CDX2, KRT7, KRT18, TEAD4, ELF5 and HAND1, imprinted genes such as IGF2, PEG1 and PEG10, and telomerase activity related genes TERC and TERF2 were detected by immunofluorescence staining, reverse transcription PCR and quantitative real-time PCR analyses. Both PA and IVF blastocysts derived trophoblast cells possessed the ability to differentiate into mature trophoblast cells in vitro. The addition of Y-27632 improved the growth of both PA and IVF blastocyst derived cell lines and increased the expression of trophoblast genes. This study has provided an alternative highly efficient method to establish trophoblast for research focused on peri-implantation and placenta development in IVF and PA embryos.


PLOS ONE | 2014

Karyotype Characterization of In Vivo - and In Vitro -Derived Porcine Parthenogenetic Cell Lines

Qiang Liu; Manling Zhang; Dongxia Hou; Xuejie Han; Yong Jin; Lihua Zhao; Xiaowei Nie; Xin Zhou; Ting Yun; Yuhang Zhao; Xianghua Huang; Daorong Hou; Ning Yang; Zhaoqiang Wu; Xueling Li; Rongfeng Li

Mammalian haploid cell lines provide useful tools for both genetic studies and transgenic animal production. To derive porcine haploid cells, three sets of experiments were conducted. First, genomes of blastomeres from 8-cell to 16-cell porcine parthenogenetically activated (PA) embryos were examined by chromosome spread analysis. An intact haploid genome was maintained by 48.15% of blastomeres. Based on this result, two major approaches for amplifying the haploid cell population were tested. First, embryonic stem-like (ES-like) cells were cultured from PA blastocyst stage embryos, and second, fetal fibroblasts from implanted day 30 PA fetuses were cultured. A total of six ES-like cell lines were derived from PA blastocysts. No chromosome spread with exactly 19 chromosomes (the normal haploid complement) was found. Four cell lines showed a tendency to develop to polyploidy (more than 38 chromosomes). The karyotypes of the fetal fibroblasts showed different abnormalities. Cells with 19–38 chromosomes were the predominant karyotype (59.48–60.91%). The diploid cells were the second most observed karyotype (16.17%–22.73%). Although a low percentage (3.45–8.33%) of cells with 19 chromosomes were detected in 18.52% of the fetus-derived cell lines, these cells were not authentic haploid cells since they exhibited random losses or gains of some chromosomes. The haploid fibroblasts were not efficiently enriched via flow cytometry sorting. On the contrary, the diploid cells were efficiently enriched. The enriched parthenogenetic diploid cells showed normal karyotypes and expressed paternally imprinted genes at extremely low levels. We concluded that only a limited number of authentic haploid cells could be obtained from porcine cleavage-stage parthenogenetic embryos. Unlike mouse, the karyotype of porcine PA embryo-derived haploid cells is not stable, long-term culture of parthenogenetic embryos, either in vivo or in vitro, resulted in abnormal karyotypes. The porcine PA embryo-derived diploid fibroblasts enriched from sorting might be candidate cells for paternally imprinted gene research.


Journal of Genetics and Genomics | 2018

Overexpressing dominant-negative FGFR2-IIIb impedes lung branching morphogenesis in pigs

Qin Chen; Bin Fang; Ying Wang; Chu Li; Xiaoxue Li; Ronggen Wang; Qiang Xiong; Lining Zhang; Yong Jin; Manling Zhang; Xiaorui Liu; Lin Li; Lisha Mou; Rongfeng Li; Haiyuan Yang; Yifan Dai

Genetic studies with mouse models have shown that fibroblast growth factor receptor 2-IIIb (FGFR2-IIIb) plays crucial roles in lung development and differentiation. To evaluate the effect of FGFR2-IIIb in pig lung development, we employed somatic cell nuclear transfer (SCNT) technology to generate transgenic pig fetuses overexpressing the transmembrane (dnFGFR2-IIIb-Tm) and soluble (dnFGFR2-IIIb-HFc) forms of the dominant-negative human FGFR2-IIIb driven by the human surfactant protein C (SP-C) promoter, which was specifically expressed in lung epithelia. Eight dnFGFR2-IIIb-Tm transgenic and twelve dnFGFR2-IIIb-HFc transgenic pig fetuses were collected from three and two recipient sows, respectively. Repression of FGFR2-IIIb in lung epithelia resulted in smaller lobes and retardation of alveolarization in both forms of dnFGFR2-IIIb transgenic fetuses. Moreover, the dnFGFR2-IIIb-HFc transgenic ones showed more deterioration in lung development. Our results demonstrate that disruption of FGFR2-IIIb signaling in the epithelium impedes normal branching and alveolarization in pig lungs, which is less severe than the results observed in transgenic mice. The dnFGFR2-IIIb transgenic pig is a good model for the studies of blastocyst complementation as well as the mechanisms of lung development and organogenesis.


Acta Biomaterialia | 2018

Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH

Runjie Zhang; Ying Wang; Lei Chen; Ronggen Wang; Chu Li; Xiaoxue Li; Bin Fang; Xueyang Ren; Miaomiao Ruan; Jiying Liu; Qiang Xiong; Lining Zhang; Yong Jin; Manling Zhang; Xiaorui Liu; Lin Li; Qiang Chen; Dengke Pan; Rongfeng Li; David K. C. Cooper; Haiyuan Yang; Yifan Dai

Bioprosthetic heart valves (BHVs) originating from pigs are extensively used for heart valve replacement in clinics. However, recipient immune responses associated with chronic calcification lead to structural valve deterioration (SVD) of BHVs. Two well-characterized epitopes on porcine BHVs have been implicated in SVD, including galactose-α1,3-galactose (αGal) and N-glycolylneuraminic acid (Neu5Gc) whose synthesis are catalyzed by α(1,3) galactosyltransferase (encoded by the GGTA1 gene) and CMP-Neu5Ac hydroxylase (encoded by the CMAH gene), respectively. It has been reported that BHV from αGal-knockout pigs are associated with a significantly reduced immune response by human serum. Moreover, valves from αGal/Neu5Gc-deficient pigs could further reduce human IgM/IgG binding when compared to BHV from αGal-knockout pigs. Recently, another swine xenoantigen, Sd(a), produced by β-1,4-N-acetyl-galactosaminyl transferase 2 (β4GalNT2), has been identified. To explore whether tissue from GGTA1, CMAH, and β4GalNT2 triple gene-knockout (TKO) pigs would further minimize human antibody binding to porcine pericardium, TKO pigs were successfully produced by CRISPR/Cas9 mediated gene targeting. Our results showed that the expression of αGal, Neu5G and Sd(a) on TKO pigs was negative, and that human IgG/IgM binding to pericardium was minimal. Moreover, the analysis of collagen composition and physical characteristics of porcine pericardium from the TKO pigs indicated that elimination of the three xenoantigens had no significant impact on the physical proprieties of porcine pericardium. Our results demonstrated that TKO pigs would be an ideal source of BHVs. STATEMENT OF SIGNIFICANCE Surgical heart valve replacement is an established lifesaving treatment for diseased heart valve. Bioprosthetic heart valves (BHVs) made from glutaraldehyde-fixed porcine or bovine tissues are widely used in clinics but exhibit age-dependent structural valve degeneration (SVD) which is associated with the immune response against BHVs. Three major xenoantigens present on commercial BHVs, Galactosea α1,3 galactose (αGal), N-glycolylneuraminic acid (Neu5Gc) and glycan products of β-1,4-N-acetyl-galactosaminyl transferase 2 (β4GalNT2) are eliminated through CRISPR/Cas9 mediated gene targeting in the present study. The genetically modified porcine pericardium showed reduced immunogenicity but comparable collagen composition and physical characteristics of the pericardium from wild-type pigs. Our data suggested that BHVs from TKO pigs is a promising alternative for currently available BHVs from wild-type pigs.


Scientific Reports | 2017

Enhancement of porcine intramuscular fat content by overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase in skeletal muscle

Zijian Ren; Ying Wang; Yuanyuan Ren; Zhengwei Zhang; Weiwang Gu; Zhaoting Wu; Lingyi Chen; Lisha Mou; Rongfeng Li; Haiyuan Yang; Yifan Dai

Intramuscular fat (IMF) content has been generally recognized as a desirable trait in pork meat because of its positive effect on eating quality. An effective approach to enhance IMF content in pork is the generation of transgenic pigs. In this study, we used somatic cell nuclear transfer (SCNT) to generate cloned pigs exhibiting ectopic expression of phosphoenolpyruvate carboxykinase (PEPCK-C) driven by an α-skeletal-actin gene promoter, which was specifically expressed in skeletal muscle. Using qRT-PCR and Western blot analysis, we demonstrated that PEPCK-C was functionally expressed and had a significant effect on total fatty acid content in the skeletal muscle of the transgenic pigs, while the n-6/n-3 polyunsaturated fatty acid (PUFA) ratio showed no difference between transgenic and control pigs. Thus, genetically engineered PEPCK-Cmus pigs may be an effective solution for the production of IMF-enriched pork.


Transplantation | 2018

Reducing Immunogenicity of Porcine Bioprosthetic Heart Valves via GGTA1/β4GalNT2/CMAH Gene Targeting

Runjie Zhang; Ying Wang; Lei Chen; Chu Li; Xiaoxue Li; Ronggen Wang; Bin Fang; Xueyang Ren; Miaomiao Ruan; Jiying Liu; Qiang Xiong; Lining Zhang; Yong Jin; Manling Zhang; Xiaorui Liu; Lin Li; Lisha Mou; Rongfeng Li; Cooper Dkc; Haiyuan Yang; Yifan Dai

Background Bioprosthetic heart valves (BHVs) originated from pigs are extensively used for diseased heart valve replacement. However, BHVs undergo chronic calcification which is associated with recipient immune responses, leading to structural valve deterioration (SVD). Three major xenoantigens including Galactose a1,3 galactose (&agr;Gal), N-glycolylneuraminic acid (Neu5Gc), and glycan products of &bgr;-1,4-N-acetyl-galactosaminyl transferase 2 (&bgr;4GalNT2) have been identified to be implicated in SVD. The use of valves derived from genetically modified pigs avoid of these pig antigens may improve BHV durability. Methods: CRISPR/Cas9 mediated gene targeting was employed to disrupt porcine GGTA1/CMAH/&bgr;4GalNT2 genes. Peripheral blood mononuclear cells (PBMC) and pericardial tissue of GGTA1/CMAH/&bgr;4GalNT2 triple gene knockout (TKO) pigs were examined for the targeted xenoantigen expression and human IgG/IgM binding. The pericardial collagen composition was analyzed by Trichrome Masson staining and immunohistochemistry. The total collagen content and the mechanical properties of pericardium of pericardium were evaluated by hydroxyproline estimation method and uniaxial tensile testing, respectively. Results: &agr;Gal, Neu5Gc and &bgr;4GalNT2 expression was high on WT pig PBMC and pericardium but undetectable on TKO pigs. PBMC and pericardium from GGTA1/CMAH/&bgr;4GalNT2 deficient pigs exhibited decreased human IgM/IgG binding compared to those from WT pigs. Collagen expression and content of pericardial tissue showed no significant difference between TKO and WT pigs. Mechanical proprieties of TKO pericardium were comparable with those of WT pigs. Conclusion Elimination of &agr;Gal, Neu5Gc and &bgr;4GalNT2 xenoantigens had no significant impact on the physical proprieties of porcine pericardium but dramatically reduced its immunogenicity, which highlighted the potential of TKO pigs as preferable sources of BHVs. A grant from the National Natural Science Foundation of China (No. 81570402). a grant from the National Key R&D Program of China (2017YFC1103701). a grant from the National Key R&D Program of China (2017YFC1103702). a grant from the Jiangsu Key Laboratory of Xenotransplantation (BM2012116). grants from the Shenzhen Foundation of Science and Technology (No. JCYJ20160229204849975 and GCZX2015043017281705). a grant from the Sanming Project of Medicine in Shenzhen, the Fund for High Level Medical Discipline Construction of Shenzhen (No. 2016031638).

Collaboration


Dive into the Rongfeng Li's collaboration.

Top Co-Authors

Avatar

Manling Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yong Jin

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lihua Zhao

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yifan Dai

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Haiyuan Yang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Qiang Xiong

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Lining Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaorui Liu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Bin Fang

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge