Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronghua Wang is active.

Publication


Featured researches published by Ronghua Wang.


BMC Genomics | 2015

Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.)

Xiaochuan Sun; Liang Xu; Yan Wang; Rugang Yu; Xianwen Zhu; Xiaobo Luo; Yiqin Gong; Ronghua Wang; Cecilia Limera; Keyun Zhang; Liwang Liu

BackgroundSalt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown.ResultsSolexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR).ConclusionsWith the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops.


Plant Science | 2015

De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish(Raphanus sativus L.)

Liang Xu; Yan Wang; Wei Liu; Jin Wang; Xianwen Zhu; Keyun Zhang; Rugang Yu; Ronghua Wang; Yang Xie; Wei Zhang; Yiqin Gong; Liwang Liu

Cadmium (Cd) is a nonessential metallic trace element that poses potential chronic toxicity to living organisms. To date, little is known about the Cd-responsive regulatory network in root vegetable crops including radish. In this study, 31,015 unigenes representing 66,552 assembled unique transcripts were isolated from radish root under Cd stress based on de novo transcriptome assembly. In all, 1496 differentially expressed genes (DEGs) consisted of 3579 transcripts were identified from Cd-free (CK) and Cd-treated (Cd200) libraries. Gene Ontology and pathway enrichment analysis indicated that the up- and down-regulated DEGs were predominately involved in glucosinolate biosynthesis as well as cysteine and methionine-related pathways, respectively. RT-qPCR showed that the expression profiles of DEGs were in consistent with results from RNA-Seq analysis. Several candidate genes encoding phytochelatin synthase (PCS), metallothioneins (MTs), glutathione (GSH), zinc iron permease (ZIPs) and ABC transporter were responsible for Cd uptake, accumulation, translocation and detoxification in radish. The schematic model of DEGs and microRNAs-involved in Cd-responsive regulatory network was proposed. This study represents a first comprehensive transcriptome-based characterization of Cd-responsive DEGs in radish. These results could provide fundamental insight into complex Cd-responsive regulatory networks and facilitate further genetic manipulation of Cd accumulation in root vegetable crops.


Scientific Reports | 2015

Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish ( Raphanus sativus L.)

Shanshan Nie; Liang Xu; Yan Wang; Danqiong Huang; Everlyne M’mbone Muleke; Xiaochuan Sun; Ronghua Wang; Yang Xie; Yiqin Gong; Liwang Liu

MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops.


Scientific Reports | 2016

Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots

Yan Wang; Liang Xu; Hong Shen; Juanjuan Wang; Wei Liu; Xianwen Zhu; Ronghua Wang; Xiaochuan Sun; Liwang Liu

The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation.


Plant Molecular Biology Reporter | 2015

Transcriptome-Wide Characterization of Novel and Heat-Stress-Responsive microRNAs in Radish (Raphanus Sativus L.) Using Next-Generation Sequencing

Ronghua Wang; Liang Xu; Xianwen Zhu; Lulu Zhai; Yan Wang; Rugang Yu; Yiqin Gong; Cecilia Limera; Liwang Liu

AbstractmicroRNAs (miRNAs) are a class of single-stranded endogenous non-coding RNAs that play critical roles in plant growth, development, and environmental stress responses. Temperature is one of the major physical parameters disturbing cellular homeostasis and causing leaf etiolation in plants. Previous studies have reported that several conserved and novel miRNAs were responsive to heat stress in plants. However, the characterization of miRNAs responsive to heat stress in radish remains poorly understood. To better understand miRNAs and their target genes under heat stress, two small RNA libraries were constructed from heat-treated (Heat24) and heat-untreated (CK) radish roots. Using Solexa system, totally, 26 known and 19 novel miRNAs were identified as differentially expressed under heat stress. Expression patterns of a set of heat-responsive miRNAs were validated by quantitative real-time PCR (qRT-PCR). Furthermore, 422 sliced targets for 25 known miRNAs were identified by degradome sequencing technology, and most of the identified targets are involved in multiple biological processes including transcriptional regulation and response to biotic and abiotic stresses. Moreover, some miRNAs and their corresponding targets, which are related to the accumulation of heat stress transcription factors and heat shock proteins, played important roles in thermo-tolerance in radish. These findings could enhance the understanding of molecular mechanisms underlying miRNAs and their targets in regulating plant responses to heat stress.


Frontiers in Plant Science | 2016

De novo Taproot Transcriptome Sequencing and Analysis of Major Genes Involved in Sucrose Metabolism in Radish (Raphanus sativus L.).

Rugang Yu; Liang Xu; Wei Zhang; Yan Wang; Xiaobo Luo; Ronghua Wang; Xianwen Zhu; Yang Xie; Benard K. Karanja; Liwang Liu

Radish (Raphanus sativus L.) is an important annual or biennial root vegetable crop. The fleshy taproot comprises the main edible portion of the plant with high nutrition and medical value. Molecular biology study of radish begun rather later, and lacks sufficient transcriptomic and genomic data in pubic databases for understanding of the molecular mechanism during the radish taproot formation. To develop a comprehensive overview of the ‘NAU-YH’ root transcriptome, a cDNA library, prepared from three equally mixed RNA of taproots at different developmental stages including pre-cortex splitting stage, cortex splitting stage, and expanding stage was sequenced using high-throughput Illumina RNA sequencing. From approximately 51 million clean reads, a total of 70,168 unigenes with a total length of 50.28 Mb, an average length of 717 bp and a N50 of 994 bp were obtained. In total, 63,991 (about 91.20% of the assembled unigenes) unigenes were successfully annotated in five public databases including NR, GO, COG, KEGG, and Nt. GO analysis revealed that the majority of these unigenes were predominately involved in basic physiological and metabolic processes, catalytic, binding, and cellular process. In addition, a total of 103 unigenes encoding eight enzymes involved in the sucrose metabolism related pathways were also identified by KEGG pathway analysis. Sucrose synthase (29 unigenes), invertase (17 unigenes), sucrose-phosphate synthase (16 unigenes), fructokinase (17 unigenes), and hexokinase (11 unigenes) ranked top five in these eight key enzymes. From which, two genes (RsSuSy1, RsSPS1) were validated by T-A cloning and sequenced, while the expression of six unigenes were profiled with RT-qPCR analysis. These results would be served as an important public reference platform to identify the related key genes during taproot thickening and facilitate the dissection of molecular mechanisms underlying taproot formation in radish.


Frontiers in Plant Science | 2016

Identification of microRNAs and Their Target Genes Explores miRNA-Mediated Regulatory Network of Cytoplasmic Male Sterility Occurrence during Anther Development in Radish (Raphanus sativus L.)

Wei Zhang; Yang Xie; Liang Xu; Yan Wang; Xianwen Zhu; Ronghua Wang; Yang Zhang; Everlyne M’mbone Muleke; Liwang Liu

MicroRNAs (miRNAs) are a type of endogenous non-coding small RNAs that play critical roles in plant growth and developmental processes. Cytoplasmic male sterility (CMS) is typically a maternally inherited trait and widely used in plant heterosis utilization. However, the miRNA-mediated regulatory network of CMS occurrence during anther development remains largely unknown in radish. In this study, a comparative small RNAome sequencing was conducted in floral buds of CMS line ‘WA’ and its maintainer line ‘WB’ by high-throughput sequencing. A total of 162 known miRNAs belonging to 25 conserved and 24 non-conserved miRNA families were isolated and 27 potential novel miRNA families were identified for the first time in floral buds of radish. Of these miRNAs, 28 known and 14 potential novel miRNAs were differentially expressed during anther development. Several target genes for CMS occurrence-related miRNAs encode important transcription factors and functional proteins, which might be involved in multiple biological processes including auxin signaling pathways, signal transduction, miRNA target silencing, floral organ development, and organellar gene expression. Moreover, the expression patterns of several CMS occurrence-related miRNAs and their targets during three stages of anther development were validated by qRT-PCR. In addition, a potential miRNA-mediated regulatory network of CMS occurrence during anther development was firstly proposed in radish. These findings could contribute new insights into complex miRNA-mediated genetic regulatory network of CMS occurrence and advance our understanding of the roles of miRNAs during CMS occurrence and microspore formation in radish and other crops.


Plant Molecular Biology Reporter | 2015

Identification of Radish ( Raphanus sativus L.) miRNAs and Their Target Genes to Explore miRNA-Mediated Regulatory Networks in Lead (Pb) Stress Responses by High-Throughput Sequencing and Degradome Analysis

Yan Wang; Wei Liu; Hong Shen; Xianwen Zhu; Lulu Zhai; Liang Xu; Ronghua Wang; Yiqin Gong; Cecilia Limera; Liwang Liu

Increasing evidence has revealed that microRNA (miRNA)-mediated gene regulation plays a significant role in response to heavy metal stresses. However, there is little information available about the expression patterns or roles of miRNAs under lead toxicity stress in plants. The radish is an important root vegetable crop with a fleshy taproot as the edible part. It was of vital importance to investigate the response mechanisms and explore the regulatory network at the molecular level under the heavy metal stresses in radish. In the present study, using high-throughput sequencing and degradome analysis, a genome-wide identification of radish miRNA and their targets under the exposure of Pb stress was conducted. A total of 74 known and 173 potential novel miRNAs were successfully identified from two radish root libraries of one untreated control (CK) and one Pb-stressed (Pb500). Of these, 25 known and nine novel miRNAs were significantly differentially expressed and identified as Pb-responsive miRNAs. Degradome analysis revealed that 1,979 miRNA-mRNA target transcripts could potentially be cleaved. Gene Ontology (GO) analysis revealed that these target transcripts were predominately involved in the regulation of transcription, defense responses, and binding related terms. The identified target genes for Pb-responsive miRNAs were mainly involved in stress-related signal sensing and transduction, specific metal uptake and homeostasis mechanisms. Additionally, the expression patterns of 20 Pb-responsive miRNAs and six target genes were validated by quantitative real-time PCR (qRT-PCR). These results provide fundamental insights into the miRNA-mediated regulatory networks and molecular mechanisms underlying plant responsiveness to Pb stresses.


BMC Plant Biology | 2015

Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish ( Raphanus sativus L.)

Rugang Yu; Yan H. Wang; Liang Xu; Xianwen Zhu; Wei Zhang; Ronghua Wang; Yiqin Gong; Cecilia Limera; Liwang Liu

BackgroundRadish (Raphanus sativus L.) is an economically important root vegetable crop, and the taproot-thickening process is the most critical period for the final productivity and quality formation. MicroRNAs (miRNAs) are a family of non-coding small RNAs that play an important regulatory function in plant growth and development. However, the characterization of miRNAs and their roles in regulating radish taproot growth and thickening remain largely unexplored. A Solexa high-throughput sequencing technology was used to identify key miRNAs involved in taproot thickening in radish.ResultsThree small RNA libraries from ‘NAU-YH’ taproot collected at pre-cortex splitting stage, cortex splitting stage and expanding stage were constructed. In all, 175 known and 107 potential novel miRNAs were discovered, from which 85 known and 13 novel miRNAs were found to be significantly differentially expressed during taproot thickening. Furthermore, totally 191 target genes were identified for the differentially expressed miRNAs. These target genes were annotated as transcription factors and other functional proteins, which were involved in various biological functions including plant growth and development, metabolism, cell organization and biogenesis, signal sensing and transduction, and plant defense response. RT-qPCR analysis validated miRNA expression patterns for five miRNAs and their corresponding target genes.ConclusionsThe small RNA populations of radish taproot at different thickening stages were firstly identified by Solexa sequencing. Totally 98 differentially expressed miRNAs identified from three taproot libraries might play important regulatory roles in taproot thickening. Their targets encoding transcription factors and other functional proteins including NF-YA2, ILR1, bHLH74, XTH16, CEL41 and EXPA9 were involved in radish taproot thickening. These results could provide new insights into the regulatory roles of miRNAs during the taproot thickening and facilitate genetic improvement of taproot in radish.


Frontiers in Plant Science | 2016

Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure

Yan Wang; Liang Xu; Mingjia Tang; Haiyan Jiang; Wei Chen; Wei Zhang; Ronghua Wang; Liwang Liu

Lead (Pb) is one of the most abundant heavy metal (HM) pollutants, which can penetrate the plant through the root and then enter the food chain causing potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots respectively upon Pb(NO3)2 at 500 mg L−1(Pb500) and 1000 mg L−1(Pb1000), were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification). A total of 3898 protein species were successfully detected and 2141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes under both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS) scavenging, photosynthesis, and respiration and carbon metabolism were successfully identified. Gene Ontology (GO) and pathway enrichment analysis of the 135 differential abundance protein species (DAPS) revealed that the overrepresented GO terms included “cell wall,” “apoplast,” “response to metal ion,” “vacuole,” and “peroxidase activity,” and the critical enriched pathways were involved in “citric acid (TCA) cycle and respiratory electron transport,” “pyruvate metabolism,” “phenylalanine metabolism,” “phenylpropanoid biosynthesis,” and “carbon metabolism.” Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomics and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e., ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase) involved in the glycolysis and TCA cycle were severely affected, which ultimately cause alteration of some metabolites including glucose, citrate and malate. Meanwhile, a series of other defense responses including ascorbate (ASA)–glutathione (GSH) cycle for ROS scavenging and Pb-defense protein species (glutaredoxin, aldose 1-epimerase malate dehydrogenase and thioredoxin), were triggered to cope with Pb-induced injuries. These results would be helpful for further dissecting molecular mechanism underlying plant response to HM stresses, and facilitate effective management of HM contamination in vegetable crops by genetic manipulation.

Collaboration


Dive into the Ronghua Wang's collaboration.

Top Co-Authors

Avatar

Liang Xu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Liwang Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xianwen Zhu

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Yiqin Gong

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rugang Yu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Cecilia Limera

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yang Xie

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Luo

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge