Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongliang Tong is active.

Publication


Featured researches published by Rongliang Tong.


Laboratory Investigation | 2014

BAG3 regulates epithelial–mesenchymal transition and angiogenesis in human hepatocellular carcinoma

Heng Xiao; Shaobing Cheng; Rongliang Tong; Zheng Lv; Chaofeng Ding; Chengli Du; Haiyang Xie; Lin Zhou; Jian Wu; Shusen Zheng

Bcl2-associated athanogene 3 (BAG3) protein is a co-chaperone of heat-shock protein (Hsp) 70 and may regulate major physiological and pathophysiological processes. However, few reports have examined the role of BAG3 in human hepatocellular carcinoma (HCC). In this study, we show that BAG3 regulates epithelial–mesenchymal transition (EMT) and angiogenesis in HCC. BAG3 was overexpressed in HCC tissues and cell lines. BAG3 knockdown resulted in reduction in migration and invasion of HCC cells, which was linked to reversion of EMT by increasing E-cadherin expression and decreasing N-cadherin, vimentin and slug expression, as well as suppressing matrix metalloproteinase 2 (MMP-2) expression. In a xenograft tumorigenicity model, BAG3 knockdown effectively inhibited tumor growth and metastasis through reduction in CD34 and VEGF expression and reversal of the EMT pathway. In conclusion, BAG3 is associated with the invasiveness and angiogenesis in HCC, and the BAG3 gene may be a novel therapeutic approach against HCC.


ACS Applied Materials & Interfaces | 2018

MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor

Xuerui Chen; Rongliang Tong; Zheqi Shi; Beng Yang; Hua Liu; Shiping Ding; Xu Wang; Qunfang Lei; Jian Wu; Wenjun Fang

High porosities, large surface areas, and tunable functionalities made metal-organic frameworks (MOFs) as effective carriers for drug delivery. One of the most promising MOFs is the zeolitic imidazolate framework (ZIF-8) crystal, an advanced functional material for small-molecule delivery, due to its high loading ability and pH-sensitive degradation. As a novel carrier, ZIF-8 nanoparticles were used in this work to control the release of an autophagy inhibitor, 3-methyladenine (3-MA), and prevent it from dissipating in a large quantity before reaching the target. The cellular uptake in HeLa cells of 3-MA encapsulated in ZIF-8 (3-MA@ZIF-8 NPs) is facilitated through the nanoparticle internalization with reference to TEM observations and the quantitative analyses of zinc by ICP-MS. The autophagy-related proteins and autophagy flux in HeLa cells treated with 3-MA@ZIF-8 NPs show that the autophagosome formation is significantly blocked, which reveals that the pH-sensitive dissociation increases the efficiency of autophagy inhibition at the equivalent concentration of 3-MA. In vivo experiments, when compared to free 3-MA, 3-MA@ZIF-8 NPs show a higher antitumor efficacy and repress the expression of autophagy-related markers, Beclin 1 and LC3. It follows that ZIF-8 is an efficient drug delivery vehicle in antitumor therapy, especially in inhibiting autophagy of cancer cells.


World Journal of Gastroenterology | 2017

Remote ischemic perconditioning prevents liver transplantation-induced ischemia/reperfusion injury in rats: Role of ROS/RNS and eNOS

Ning He; Jun-Jun Jia; Jian-Hui Li; Yan-Fei Zhou; Bingyi Lin; Yi-Fan Peng; Jun-Jie Chen; Tianchi Chen; Rongliang Tong; Li Jiang; Haiyang Xie; Lin Zhou; Shusen Zheng

AIM To investigate the underlying mechanisms of the protective role of remote ischemic perconditioning (RIPerC) in rat liver transplantation. METHODS Sprague-Dawley rats were subjected to sham, orthotopic liver transplantation (OLT), ischemic postconditioning (IPostC) or RIPerC. After 3 h reperfusion, blood samples were taken for measurement of alanine aminotransferase, aspartate aminotransferase, creatinine (Cr) and creatinine kinase-myocardial band (CK-MB). The liver lobes were harvested for the following measurements: reactive oxygen species (ROS), H2O2, mitochondrial membrane potential (ΔΨm) and total nitric oxide (NO). These measurements were determined using an ROS/H2O2, JC1 and Total NOx Assay Kit, respectively. Endothelial NO synthase (eNOS) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, and peroxynitrite was semi-quantified by western blotting of 3-nitrotyrosine. RESULTS Compared with the OLT group, the grafts subjected to RIPerC showed significantly improved liver and remote organ functions (P < 0.05). ROS (P < 0.001) including H2O2 (P < 0.05) were largely elevated in the OLT group as compared with the sham group, and RIPerC (P < 0.05) reversed this trend. The collapse of ΔΨm induced by OLT ischemia/reperfusion (I/R) injury was significantly attenuated in the RIPerC group (P < 0.001). A marked increase of NO content and phosphoserine eNOS, both in protein and mRNA levels, was observed in liver graft of the RIPerC group as compared with the OLT group (P < 0.05). I/R-induced 3-nitrotyrosine content was significantly reduced in the RIPerC group as compared with the OLT group (P < 0.05). There were no significant differences between the RIPerC and IPostC groups for all the results except Cr. The Cr level was lower in the RIPerC group than in the IPostC group (P < 0.01). CONCLUSION Liver graft protection by RIPerC is similar to or better than that of IPostC, and involves inhibition of oxidative stress and up-regulation of the PI3K/Akt/eNOS/NO pathway.


Scientific Reports | 2017

Over Expression of Long Non-Coding RNA PANDA Promotes Hepatocellular Carcinoma by Inhibiting Senescence Associated Inflammatory Factor IL8

Wendi Hu; Xiaoyu Weng; Rongliang Tong; Shaobing Cheng; Chaofeng Ding; Heng Xiao; Zhen Lv; Haiyang Xie; Lin Zhou; Jian Wu; Shusen Zheng

It has been reported that long non-coding RNA PANDA was disregulated in varieties types of tumor, but its expression level and biological role in hepatocellular carcinoma (HCC) remains contradictory. We detected PANDA expression in two independent cohorts (48 HCC patients following liver transplantation and 84 HCC patients following liver resection), and found that PANDA was down-regulated in HCC. Thereafter we explored its function in cancer biology by inversing its low expression. Surprisingly, overexpression of PANDA promoted HCC proliferation and carcinogenesis in vitro and in vivo. Mechanistically, PANDA repressed transcriptional activity of senescence associated inflammatory factor IL8, which leaded to inhibition of cellular senescence. Therefore, our research help to better understand the complex role of PANDA in HCC, and suggest more thoughtful strategies should be applied before it can be treated as a potential therapeutic target.


Oncotarget | 2017

KCTD11 inhibits growth and metastasis of hepatocellular carcinoma through activating Hippo signaling

Rongliang Tong; Beng Yang; Heng Xiao; Wendi Hu; Xiaoyu Weng; Shaobing Cheng; Chengli Du; Zhen Lv; Chaofeng Ding; Lin Zhou; Haiyang Xie; Jian Wu; Shusen Zheng

A lack of effective prognostic biomarkers and molecular targets is a serious problem in hepatocellular carcinoma. KCTD11, reported as a tumor suppressor, are still not well understood. In this study, KCTD11 was found low-expressed in HCC tissues and cell lines. The HCC patients with low expression of KCTD11 suggested shorter overall survival. We found KCTD11 inhibiting cell proliferation in vitro and tumor growth in vivo, by activating p21 and repressing cycle related proteins. KCTD11 also inhibited cell adhesion by decreasing CTGF and CLDN1. We found CTGF binding COL3A1 in HCCLM3, which might lead to reduction of COL3A1 expression. KCTD11 also inhibited cell migration and invasion in HCC, by repressing MMPs and EMT. We found the tumor suppression function of KCTD11 was at least partly through activating Hippo pathway in HCC. Base on the enhanced Hippo pathway, KCTD11 could activate p21 by stabilizing p53 or promoting the MST1/ GSK3β/p21 signaling in HCC. Overall, these results suggest that KCTD11 works as a tumor suppressor and owns prognostic and therapeutic potentials in HCC.


BioMed Research International | 2014

BAG3 and HIF-1α Coexpression Detected by Immunohistochemistry Correlated with Prognosis in Hepatocellular Carcinoma after Liver Transplantation

Heng Xiao; Rongliang Tong; Shaobing Cheng; Zhen Lv; Chaofeng Ding; Chengli Du; Haiyang Xie; Lin Zhou; Jian Wu; Shusen Zheng

Objective. The objective is to determine the effects of BAG3 and HIF-1α expression on the prognosis of HCC patients after liver transplantation. Methods. Samples from 31 patients with HCC receiving liver transplantation were collected for this study. The immunohistochemistry was used to detect the expression of BAG3 and HIF-1α of HCC samples. Results. According to the immunohistochemistry results, BAG3 and HIF-1α staining were significantly associated with tumor TNM stage (P = 0.004, P = 0.012). A significant association between high BAG3/HIF-1α levels and a shorter overall survival was detected, so as the combined BAG3 and HIF-1α analysis. Conclusion. The results suggested that the expression level of BAG3 and HIF-1α is efficient prognostic parameters in patients with HCC after liver transplantation.


International Journal of Molecular Sciences | 2016

Expression and Critical Role of Interleukin Enhancer Binding Factor 2 in Hepatocellular Carcinoma

Shaobing Cheng; Xu Jiang; Chaofeng Ding; Chengli Du; Kwabena Gyabaah Owusu-Ansah; Xiaoyu Weng; Wendi Hu; Zhen Lv; Rongliang Tong; Heng Xiao; Haiyang Xie; Lin Zhou; Jian Wu; Shusen Zheng

Interleukin enhancer binding factor 2 (ILF2), a transcription factor, regulates cell growth by inhibiting the stabilization of mRNA. Currently, its role has gained recognition as a factor in the tumorigenic process. However, until now, little has been known about the detailed role ILF2 plays in hepatocellular carcinoma (HCC). In this study, we investigated the expression levels of ILF2 in HCC tissue with Western blot and immunohistochemical assays. To examine the effect of ILF2 on liver cancer cell growth and apoptosis, small interfering RNAs (siRNAs) targeting ILF2 were recombined to create lentiviral overexpression vectors. Our results showed higher expression levels of ILF2 mRNA and ILF2 protein in HCC tissue compared with matched peritumoral tissue. Expression of ILF2 may regulate cell growth and apoptosis in liver cancer cells via regulation of B-cell lymphoma 2 (Bcl-2), Bcl-2 related ovarian killer (Bok), Bcl-2-associated X protein (BAX), and cellular inhibitor of apoptosis 1 (cIAP1). Moreover, we inoculated nude mice with liver cancer cells to investigate the effect of ILF2 on tumorigenesis in vivo. As expected, a rapid growth was observed in cancer cells inoculated with a lentiviral vector coding Flag-ILF2 (Lenti-ILF2) compared with the control cells. Hence, these results promote a better understanding of ILF2’s potential role as a therapeutic target in HCC.


Gene | 2016

Downregulation of Peptidylprolyl isomerase A promotes cell death and enhances doxorubicin-induced apoptosis in hepatocellular carcinoma

Shaobing Cheng; Mengchao Luo; Chaofeng Ding; Zhen Lv; Rongliang Tong; Heng Xiao; Haiyang Xie; Lin Zhou; Jian Wu; Shusen Zheng

Peptidylprolyl isomerase A (PPIA) is a peptidyl-prolyl cis-trans isomerase that is known to play a critical role in the development of many human cancers. However, the precise biological function of PPIA in hepatocellular carcinoma (HCC) remains largely unclear. In this study, lentiviral overexpression vectors and small interfering RNA knockdown methods were employed to investigate the biological effects of PPIA in HCC. PPIA levels in HCC tissues and peritumoral tissues were detected by real-time Polymerase Chain Reaction (RT-PCR), Western blotting, and immunohistochemistry. Our results indicate that PPIA levels were significantly higher in the HCC tissues compared to the matched peritumoral tissues. Moreover, PPIA expression was significantly associated with tumor size in these tissues. Interestingly, serum PPIA (sPPIA) levels were significantly higher in healthy controls compared to the HCC patients. Knockdown or overexpression of PPIA was shown to downregulate and upregulate cell growth, respectively. Moreover, PPIA siRNA knockdown appears to promote doxorubicin-induced apoptosis in HCC cells, altering the expression of downstream apoptotic factors. In summary, our results indicate that PPIA may play a pivotal role in HCC by regulating cell growth and could serve as a novel marker and therapeutic molecular target for HCC patients.


Cancer Letters | 2016

TAZ regulates cell proliferation and sensitivity to vitamin D3 in intrahepatic cholangiocarcinoma

Heng Xiao; Rongliang Tong; Beng Yang; Zhen Lv; Chengli Du; Chaofeng Ding; Shaobing Cheng; Lin Zhou; Haiyang Xie; Jian Wu; Shusen Zheng

The transcriptional coactivator with PDZ binding motif (TAZ) is reported as one of the nuclear effectors of Hippo-related pathways. TAZ is found overexpressed in many primary tumors and could regulate many biological processes. However, little is known about the role of TAZ in Intrahepatic Cholangiocarcinoma (ICC). In this study, we found that TAZ is expressed more in ICC tissues than in peritumoral tissue, and a robust expression of TAZ is correlated with a lower overall survival rate of ICC patients after hepatectomy. TAZ knockdown results in an increase in cell apoptosis, a promotion of cell-cycle arrest and a decrease in tumor size and weight in vivo through an increased expression of p53. Vitamin D3 can also inhibit cell proliferation by promoting p53 expression in ICC cells. A reduction in TAZ can also enhance the sensitivity of tumor cells to vitamin D by regulating the p53/CYP24A1 pathway. In conclusion, TAZ is associated with the proliferation and drug-resistance of ICC cells, and could be a novel therapeutic target for the treatment of ICC.


International Journal of Oncology | 2018

H2A.Z regulates tumorigenesis, metastasis and sensitivity to cisplatin in intrahepatic cholangiocarcinoma

Beng Yang; Rongliang Tong; Hua Liu; Jingbang Wu; Diyu Chen; Zhengze Xue; Chaofeng Ding; Lin Zhou; Haiyang Xie; Jian Wu; Shusen Zheng

Intrahepatic cholangiocarcinoma (ICC) is a fatal, malignant tumor of the liver; effective diagnostic biomarkers and therapeutic targets for ICC have not been identified yet. High expression of H2A histone family member Z (H2A.Z) is a high-risk factor for poor prognosis in patients with breast cancer and primary hepatocellular cancer. However, the significance of H2A.Z and its expression in ICC remains unknown. The present study demonstrated that H2A.Z is overexpressed in ICC and expression of H2A.Z correlated with poor prognosis in patients with ICC. H2A.Z regulated cell proliferation in vitro and in vivo via H2A.Z/S-phase kinase-associated protein 2/p27/p21 signaling. Inhibition of H2A.Z reduced cell proliferation and induced apoptosis in ICC. In addition, downregulation of H2AZ reduced tumor metastasis by repressing epithelial-mesenchymal transition and enhanced the antitumor effects of cisplatin in the treatment of ICC. Overall, H2A.Z promoted cell proliferation and epithelial-mesenchymal transition in ICC, suggesting that H2A.Z may be a novel biomarker and therapeutic target for ICC.

Collaboration


Dive into the Rongliang Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge