Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongqin Huang is active.

Publication


Featured researches published by Rongqin Huang.


Journal of the American Chemical Society | 2013

Multifunctional Mesoporous Silica-Coated Graphene Nanosheet Used for Chemo-Photothermal Synergistic Targeted Therapy of Glioma

Yi Wang; Kaiyuan Wang; Jianfeng Zhao; Xingang Liu; Juan Bu; Xueying Yan; Rongqin Huang

Current therapy of malignant glioma in clinic is unsatisfactory with poor patient compliance due to low therapeutic efficiency and strong systemic side effects. Herein, we combined chemo-photothermal targeted therapy of glioma within one novel multifunctional drug delivery system. A targeting peptide (IP)-modified mesoporous silica-coated graphene nanosheet (GSPI) was successfully synthesized and characterized, and first introduced to the drug delivery field. A doxorubicin (DOX)-loaded GSPI-based system (GSPID) showed heat-stimulative, pH-responsive, and sustained release properties. Cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of glioma cells compared to that of single chemotherapy or photothermal therapy. Furthermore, the IP modification could significantly enhance the accumulation of GSPID within glioma cells. These findings provided an excellent drug delivery system for combined therapy of glioma due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of GSPID, which could effectively avoid frequent and invasive dosing and improve patient compliance.


Biomaterials | 2009

Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer

Weilun Ke; Kun Shao; Rongqin Huang; Liang Han; Yang Liu; Jianfeng Li; Yuyang Kuang; Liya Ye; Jinning Lou; Chen Jiang

Angiopep targeting to the low-density lipoprotein receptor-related protein-1 (LRP1) was identified to exhibit high transcytosis capacity and parenchymal accumulation. In this study, it was exploited as a ligand for effective brain-targeting gene delivery. Polyamidoamine dendrimers (PAMAM) were modified with angiopep through bifunctional PEG, then complexed with DNA, yielding PAMAM-PEG-Angiopep/DNA nanoparticles (NPs). The angiopep-modified NPs were observed to be internalized by brain capillary endothelial cells (BCECs) through a clathrin- and caveolae-mediated energy-depending endocytosis, also partly through marcopinocytosis. Also, the cellular uptake of the angiopep-modified NPs were competed by angiopep-2, receptor-associated protein (RAP) and lactoferrin, indicating that LRP1-mediated endocytosis may be the main mechanism of cellular internalization of angiopep-modified NPs. And the angiopep-modified NPs showed higher efficiency in crossing blood-brain barrier (BBB) than unmodified NPs in an in vitro BBB model, and accumulated in brain more in vivo. The angiopep-modified NPs also showed higher efficiency in gene expressing in brain than the unmodified NPs. In conclusion, PAMAM-PEG-Angiopep showed great potential to be applied in designing brain-targeting drug delivery system.


Biomaterials | 2009

Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles

Yang Liu; Rongqin Huang; Liang Han; Weilun Ke; Kun Shao; Liya Ye; Jinning Lou; Chen Jiang

A 29 amino-acid peptide derived from the rabies virus glycoprotein (RVG29) was exploited as a ligand for efficient brain-targeting gene delivery. RVG29 was modified on polyamidoamine dendrimers (PAMAM) through bifunctional PEG, then complexed with DNA, yielding PAMAM-PEG-RVG29/DNA nanoparticles (NPs). The NPs were observed to be uptaken by brain capillary endothelial cells (BCECs) through a clathrin and caveolae mediated energy-depending endocytosis. The specific cellular uptake can be inhibited by free RVG29 and GABA but not by nicotinic acetylcholine receptor (nAchR) agonists/antagonists, indicating RVG29 probably relates to the GABA(B) receptor besides nAchR reported previously. PAMAM-PEG-RVG29/DNA NPs showed higher blood-brain barrier (BBB)-crossing efficiency than PAMAM/DNA NPs in an in vitro BBB model. In vivo imaging showed that the NPs were preferably accumulated in brain. The report gene expression of the PAMAM-PEG-RVG29/DNA NPs was observed in brain, and significantly higher than unmodified NPs. Thus, PAMAM-PEG-RVG29 provides a safe and noninvasive approach for the gene delivery across the BBB.


The FASEB Journal | 2007

Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer

Rongqin Huang; Ying-hua Qu; Weilun Ke; Jian-hua Zhu; Yuanying Pei; Chen Jiang

The blood‐brain barrier (BBB) poses great difficulties for gene delivery to the brain. To circumvent the BBB, we investigated a novel brain‐targeting gene vector based on the nanoscopic high‐branching den‐drimer, polyamidoamine (PAMAM), in vitro and in vivo. Transferrin (Tf) was selected as a brain‐targeting ligand conjugated to PAMAM via bifunctional polyethylenegly‐col (PEG), yielding PAMAM‐PEG‐Tf. UV and nuclear magnetic resonance (NMR) spectroscopy were used to evaluate the synthesis of vectors. The characteristics and biodistribution of gene vectors were evaluated by fluorescent microscopy, flow cytometry, and a radiolabeling method. The transfection efficiency of vector/DNA complexes in brain capillary endothelial cells (BCECs) was evaluated by fluorescent microscopy and determination of luciferase activity. The potency of vector/DNA complexes was evaluated by using frozen sections and measuring tissue luciferase activity in Balb/c mice after i.v. administration. UV and NMR results demonstrated the successful synthesis of PAMAM‐PEG‐Tf. This vector showed a concentration‐dependent manner in cellular uptake study and a 2.25‐fold brain uptake compared with PAMAM and PAMAM‐PEG in vivo. Transfection efficiency of PAMAM‐PEG‐Tf/DNA complex was much higher than PAMAM/DNA and PAMAM‐PEG/DNA complexes in BCECs. Results of tissue expression experiments indicated the widespread expression of an exogenous gene in mouse brain after i.v. administration. With a PAMAM/DNA weight ratio of 10:1, the brain gene expression of the PAMAM‐PEG‐Tf/DNA complex was ~2‐fold higher than that of the PAMAM/DNA and PAMAM‐PEG/ DNA complexes. These results suggested that PAMAM‐PEG‐Tf can be exploited as a potential nonviral gene vector targeting to brain via noninvasive administration.—Huang, R‐Q., Qu, Y‐H., Ke, W‐L., Zhu, J‐H., Pei, Y‐Y., Jiang, C. Efficient gene delivery targeted to the brain using a transferrin‐conjugated polyethyleneglycol‐modified polyamidoamine dendrimer. FASEB J. 21, 1117–1125 (2007)


Biomaterials | 2011

Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer

Liang Han; Rongqin Huang; Jianfeng Li; Shuhuan Liu; Shixian Huang; Chen Jiang

A combination cancer therapy was investigated via co-delivery of therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (pORF-hTRAIL) and doxorubicin (DOX) using a tumor-targeting carrier, peptide HAIYPRH (T7)-conjugated polyethylene glycol-modified polyamidoamine dendrimer (PAMAM-PEG-T7). T7, a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. The result of fluorescence scanning showed that about 375 DOX molecules were bound to one pORF-hTRAIL molecule. The co-delivery system was constructed based on the electrostatic interactions between pORF-hTRAIL-DOX complex and cationic PAMAM-PEG-T7. T7-modified co-delivery system showed higher efficiency in cellular uptake and gene expression than unmodified co-delivery system in human liver cancer Bel-7402 cells, and accumulated in tumor more efficiently in vivo. In comparison with single DOX or pORF-hTRAIL delivery system, co-delivery system induced apoptosis of tumor cells in vitro and inhibited tumor growth in vivo more efficiently. In mice bearing Bel-7402 xenografts, lower doses of co-delivery system (4 μg DOX/mouse, about 0.16 mg/kg) effectively inhibited tumor growth comparable to high doses (5 mg/kg) of free doxorubicin (77% versus 69%). These results suggested that T7-mediated co-delivery system of DOX and pORF-hTRAIL was a simply prepared, combined delivery platform which can significantly improve the anti-tumor effect. This co-delivery system might widen the therapeutic window and allow for the selective destruction of cancer cells.


Biomaterials | 2012

Gene and doxorubicin co-delivery system for targeting therapy of glioma

Shuhuan Liu; Yubo Guo; Rongqin Huang; Jianfeng Li; Shixian Huang; Yuyang Kuang; Liang Han; Chen Jiang

The combination of gene therapy and chemotherapy is a promising treatment strategy for brain gliomas. In this paper, we designed a co-delivery system (DGDPT/pORF-hTRAIL) loading chemotherapeutic drug doxorubicin and gene agent pORF-hTRAIL, and with functions of pH-trigger and cancer targeting. Peptide HAIYPRH (T7), a transferrin receptor-specific peptide, was chosen as the ligand to target the co-delivery system to the tumor cells expressing transferrin receptors. T7-modified co-delivery system showed higher efficiency in cellular uptake and gene expression than unmodified co-delivery system in U87 MG cells, and accumulated in tumor more efficiently in vivo. DOX was covalently conjugated to carrier though pH-trigged hydrazone bond. In vitro incubation of the conjugates in buffers led to a fast DOX release at pH 5.0 (intracellular environment) while at pH 7.4 (blood) the conjugates are relatively stable. The combination treatment resulted in a synergistic growth inhibition (combination index, CI < 1) in U87 MG cells. The synergism effect of DGDPT/pORF-hTRAIL was verified in vitro and in vivo. In vivo anti-glioma efficacy study confirmed that DGDPT/pORF-hTRAIL displayed anti-glioma activity but was less toxic.


Journal of Controlled Release | 2010

Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain.

Kun Shao; Rongqin Huang; Jianfeng Li; Liang Han; Liya Ye; Jinning Lou; Chen Jiang

Amphotericin B (AmB) is a poorly water soluble antibiotic and is used to treat fungal infections of the central nervous system (CNS). However, AmB shows poor penetration into the CNS. Angiopep-2, the ligand of low-density lipoprotein receptor-related protein (LRP) present on the BBB, exhibits higher transcytosis capacity and parenchymal accumulation, which allowed us to consider the selectivity of it for receptor-mediated drug targeting to the brain. With this in mind, we prepared angiopep-2 modified PE-PEG based micellar drug delivery system loaded with the antifungal drug AmB to evaluate the efficiency of AmB accumulating into the brain. PE-PEG based micelles as nano-scaled drug carriers were investigated by incorporating AmB with high drug entrapping efficiency, improving solubilization of AmB and reducing its toxicity to mammalian cells. The AmB-incorporated angiopep-2 modified micelles showed highest efficiency in penetrating across the blood-brain barrier (BBB) than unmodified micelles and Fungizone (deoxycholate amphotericin B) in vitro and in vivo. Meanwhile, contrary to the free Rho 123, the enhancement of Rho 123-incorporated angiopep-2 modified micelles across the BBB can be explained by angiopep-2 modified polymeric micelles that have a potential to overcome the activity of efflux proteins expressed on the BBB such as P-glycoprotein. In conclusion, angiopep-2 modified polymeric micelles could be developed as a novel drug delivery system for brain targeting.


Molecular Pharmaceutics | 2010

Peptide-Conjugated PAMAM for Targeted Doxorubicin Delivery to Transferrin Receptor Overexpressed Tumors

Liang Han; Rongqin Huang; Shuhuan Liu; Shixian Huang; Chen Jiang

The purpose of this work was to evaluate the potential of HAIYPRH (T7) peptide as a ligand for constructing tumor-targeting drug delivery systems. T7 could target to transferrin-receptor (TfR) through a cavity on the surface of TfR and then transport into cells via endocytosis with the help of transferrin (Tf). In this study, T7-conjugated poly(ethylene glycol) (PEG)-modified polyamidoamine dendrimer (PAMAM) (PAMAM-PEG-T7) was successfully synthesized and further loaded with doxorubicin (DOX), formulating PAMAM-PEG-T7/DOX nanoparticles (NPs). In vitro, almost 100% of DOX was released during 2 h in pH 5.5, while only 55% of DOX was released over 48 h in pH 7.4. The cellular uptake of DOX could be significantly enhanced when treated with T7-modified NPs in the presence of Tf. Also, the in vitro antitumor effect was enhanced markedly. The IC(50) of PAMAM-PEG-T7/DOX NPs with Tf was 231.5 nM, while that of NPs without Tf was 676.7 nM. T7-modified NPs could significantly enhance DOX accumulation in the tumor by approximately 1.7-fold compared to that of unmodified ones and by approximately 5.3-fold compared to that of free DOX. For in vivo antitumor studies, tumor growth of mice treated with PAMAM-PEG-T7/DOX NPs was significantly inhibited compared to that of mice treated with PAMAM-PEG/DOX NPs and saline. The study provides evidence that PAMAM-PEG-T7 can be applied as a potential tumor-targeting drug delivery system. T7 may be a promising ligand for targeted drug delivery to the tumor.


Biomaterials | 2010

A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery.

Yang Liu; Jianfeng Li; Kun Shao; Rongqin Huang; Liya Ye; Jinning Lou; Chen Jiang

The blood-brain barrier is the major obstacle that prevents diagnostic and therapeutic drugs being delivered to the central nervous systems in order to exert their effects. Specific ligand-receptor binding mediated endocytosis is one of the possible strategies to cross this barrier. A 30-amino-acid peptide (leptin30) derived from an endogenic hormone-leptin is exploited as brain-targeting ligand as it is reported to possess the same brain accumulation efficiency after intravenous injection. Dendrigraft poly-L-lysine (DGL) is used as non-viral gene vector in this study. DGL-PEG-Leptin30 was complexed with plasmid DNA yielding nanoparticles (NPs). The cellular uptake characteristic and mechanism were explored in brain capillary endothelial cells (BCECs) which express leptin receptors. Furthermore, brain parenchyma microglia cells such as BV-2 cells expressing leptin receptors could promote ligand-receptor mediated endocytosis leading to enhanced gene transfection ability of DGL-PEG-Leptin30/DNA NPs. The targeted NPs were proved to be transported across in vitro BBB model effectively and accumulate more in brains after i.v. resulting in a relatively high gene transfection efficiency both in vitro and in vivo. Besides, the NPs showed low cytotoxicity after in vitro transfection. Thus, DGL-PEG-Leptin30 provides a safe and noninvasive approach for the delivery of gene across the blood-brain barrier.


Journal of the Neurological Sciences | 2010

Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model

Rongqin Huang; Weilun Ke; Yang Liu; Dong-dong Wu; Linyin Feng; Chen Jiang; Yuanying Pei

BACKGROUND Gene therapy is considered one of the most promising approaches to develop an effective treatment for Parkinsons disease (PD). The existence of blood-brain barrier (BBB) significantly limits its development. In this study, lactoferrin (Lf)-modified nanoparticles (NPs) were used as a potential non-viral gene vector due to its brain-targeting and BBB-crossing ability. METHODS AND RESULTS The neuroprotective effects were examined in a rotenone-induced chronic rat model of PD after treatment with NPs encapsulating human glial cell line-derived neurotrophic factor gene (hGDNF) via a regimen of multiple dosing intravenous administration. The results showed that multiple injections of Lf-modified NPs obtained higher GDNF expression and this gene expression was maintained for a longer time than the one with a single injection. Multiple dosing intravenous administration of Lf-modified NPs could significantly improve locomotor activity, reduce dopaminergic neuronal loss, and enhance monoamine neurotransmitter levels on rotenone-induced PD rats, which indicates its powerful neuroprotective effects. CONCLUSION The findings may have implications for long-term non-invasive gene therapy for neurodegenerative diseases in general.

Collaboration


Dive into the Rongqin Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge