Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rongying Jin is active.

Publication


Featured researches published by Rongying Jin.


Physical Review Letters | 2008

Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals

Athena S. Sefat; Rongying Jin; Michael A. McGuire; Brian C. Sales; David J. Singh; David Mandrus

Here we report bulk superconductivity in BaFe1.8Co0.2As2 single crystals below Tc=22 K, as demonstrated by resistivity, magnetic susceptibility, and specific heat data. Hall data indicate that the dominant carriers are electrons, as expected from simple chemical reasoning. This is the first example of superconductivity induced by electron doping in this family of materials. In contrast with cuprates, the BaFe2As2 system appears to tolerate considerable disorder in the FeAs planes. First principles calculations for BaFe1.8Co0.2As2 indicate the interband scattering due to Co is weak.


Physical Review B | 2009

Bulk Superconductivity at 14 K in Single Crystals of Fe1+yTexSe1-x

Brian C. Sales; Athena S. Sefat; Michael A. McGuire; Rongying Jin; David Mandrus; Yurij Mozharivskyj

Resistivity, magnetic susceptibility, and heat-capacity measurements are reported for single crystals of Fe{sub 1+y}Te{sub x}Se{sub 1-x} grown via a modified Bridgeman method with 0 < y < 0.15 and x = 1, 0.9, 0.75, 0. 67, 0.55, and 0.5. Although resistivity measurements show traces of superconductivity near 14 K for all x except x = 1, only crystals grown with compositions near x = 0.5 exhibit bulk superconductivity. The appearance of bulk superconductivity correlates with a reduction in the magnitude of the magnetic susceptibility at room temperature and smaller values of y, the concentration of Fe in the Fe(2) site.


Applied Physics Letters | 2009

Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2

A. Yamamoto; J. Jaroszynski; C. Tarantini; L. Balicas; J. Jiang; A. Gurevich; D. C. Larbalestier; Rongying Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; David Mandrus

We performed high-field magnetotransport and magnetization measurements on a single crystal of the 122-phase iron pnictide Ba(Fe1−xCox)2As2. Unlike the high-temperature superconductor cuprates and 1111-phase oxypnictides, Ba(Fe1−xCox)2As2 showed practically no broadening of the resistive transitions under magnetic fields up to 45 T. We report the temperature dependencies of the upper critical field Hc2 both parallel and perpendicular to the c-axis, the irreversibility field Hirrc(T), and a rather unusual symmetric volume pinning force curve Fp(H) suggestive of a strong pinning nanostructure. The anisotropy parameter γ=Hc2ab/Hc2c deduced from the slopes of dHc2ab/dT=4.9 T/K and dHc2c/dT=2.5 T/K decreases from ∼2 near Tc, to ∼1.5 at lower temperatures, much smaller than γ for 1111pnictides and high-Tc cuprates.


Superconductor Science and Technology | 2010

New Fe-based superconductors: properties relevant for applications

M. Putti; I. Pallecchi; E. Bellingeri; M.R. Cimberle; M Tropeano; C. Ferdeghini; A. Palenzona; C. Tarantini; Akiyasu Yamamoto; J. Jiang; J. Jaroszynski; F Kametani; D Abraimov; A. Polyanskii; J. D. Weiss; E. E. Hellstrom; A. Gurevich; D. C. Larbalestier; Rongying Jin; Brian C. Sales; Athena S. Sefat; Michael A. McGuire; David Mandrus; Peng Cheng; Ying Jia; H. H. Wen; S. Lee; Chang-Beom Eom

Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O, F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length and unconventional pairing. On the other hand, the Fe-based superconductors have metallic parent compounds and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, and the supposed order parameter symmetry is s-wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviors and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates. On the other hand, the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, and intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families.


Applied Physics Letters | 2006

Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays

Ilia N. Ivanov; Alexander A. Puretzky; Gyula Eres; Hsin Wang; Zhengwei Pan; H. Cui; Rongying Jin; Jane Y. Howe; David B. Geohegan

This letter reports on fast and highly anisotropic thermal transport through millimeter-tall, vertically aligned carbon nanotube arrays (VANTAs) synthesized by chemical vapor deposition on Si substrates. Thermal diffusivity measurements were performed for both longitudinal and transverse to the nanotube alignment direction, with longitudinal values as large as 2.1±0.2cm2∕s and anisotropy ratios as large as 72. Longitudinal thermal conductivities of 15.3±1.8W∕(mK) for porous 8±1vol% VANTAs in air and 5.5±0.7W∕(mK) for epoxy-infiltrated VANTAs already exceed those of phase-changing thermal interface materials used in microelectronics. Data suggest that further improvements are possible through optimization of density and defects in the arrays.


Physical Review B | 2008

Superconductivity in LaFe 1 − x Co x AsO

Athena S. Sefat; Ashfia Huq; Michael A. McGuire; Rongying Jin; Brian C. Sales; David Mandrus; Lachlan M. D. Cranswick; Peter W. Stephens; Kevin H. Stone

Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN{approx}145 K). Replacing Fe with Co is expected both to electron dope and introduce disorder in the FeAs layer. For x=0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset=11.2 K. For x=0.11 superconductivity is observed at Tconset=14.3 K and for x=0.15 it is observed at Tconset=6.0 K. For x=1, and the material appears to be ferromagnetic as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.


Applied Physics Letters | 2003

Epitaxial ferromagnetic Mn5Ge3 on Ge(111)

Changgan Zeng; Steven C. Erwin; L. C. Feldman; An-Ping Li; Rongying Jin; Y. Song; J. R. Thompson; H.H. Weitering

Ferromagnetic Mn5Ge3 thin films were grown on Ge(111) with solid-phase epitaxy. The epitaxial relationship between the alloy film and substrate is Mn5Ge3(001)//Ge(111) with [100]Mn5Ge3//[110]Ge. The alloy films exhibit metallic conductivity and strong ferromagnetism up to the Curie temperature, TC=296 K. These epitaxial alloy films are promising candidates for germanium-based spintronics.


Physical Review B | 2008

Electronic correlations in the superconductor La Fe As O 0.89 F 0.11 with low carrier density

Athena S. Sefat; Michael A. McGuire; Brian C. Sales; Rongying Jin; Jane Y. Howe; David Mandrus

The crystal structure and numerous normal and superconducting state properties of layered tetragonal (P4/nmm) LaFeAsO comopund with F ~ 11 % doping are reported. Resistivity measurements give an onset transition temperature Tconset = 28.2 K, and low field magnetic susceptibility data indicate bulk superconductivity. In applied magnetic field, analysis of the resistive transition results in a critical field Hc2 ~ 30 T and a coherence length of ~ 35 . An upper limit for the electron carrier concentration of 1 x 10^21 cm-3 is inferred from Hall data just above Tc. Strong electron-electron correlations are suggested from temperature-dependent resistivity, Seebeck coefficient, and thermal conductivity data. Anomalies near Tc are observed in both Seebeck coefficient and thermal conductivity data.


Physical Review Letters | 2001

Observation of Andreev surface bound states in the 3-K phase region of Sr2RuO4.

Z. Q. Mao; K. D. Nelson; Rongying Jin; Y. Liu; Y. Maeno

The tunneling spectrum of the superconducting phase with Tc approximately 3.0 K has been measured in the Ru-embedded region of Sr2RuO4 using cleaved junctions. A sharp zero-bias conductance peak (ZBCP) has been observed below 3 K. All characteristics of this ZBCP suggest that it originates from Andreev surface bound states, indicating that the pairing in the 3-K phase is also non- s-wave. Below the bulk Tc of Sr2RuO4 (approximately 1.5 K), a crossover from sharp to bell-shaped ZBCP was found. This supports the theory that there is a phase transition in the 3-K phase region near the bulk Tc.


Physical Review Letters | 2008

Three-dimensional magnetic correlations in multiferroic LuFe2O4.

A. D. Christianson; M. D. Lumsden; Manuel Angst; Z. Yamani; Wei Tian; Rongying Jin; E. A. Payzant; Stephen E Nagler; B. C. Sales; David Mandrus

We present single crystal neutron diffraction measurements on multiferroic LuFe(2)O(4). Magnetic reflections are observed below transitions at 240 and 175 K indicating that the magnetic interactions in LuFe(2)O(4) are three-dimensional in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. Below 175 K a significant broadening of the magnetic peaks is observed along with the buildup of a diffuse component to the magnetic scattering.

Collaboration


Dive into the Rongying Jin's collaboration.

Top Co-Authors

Avatar

David Mandrus

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian C. Sales

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jiandi Zhang

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

E. W. Plummer

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Michael A. McGuire

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Athena S. Sefat

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Mandrus

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Amar B. Karki

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Shane Stadler

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Guorong Li

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge