Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roni Kasher is active.

Publication


Featured researches published by Roni Kasher.


Environmental Science & Technology | 2011

Studying the Role of Common Membrane Surface Functionalities on Adsorption and Cleaning of Organic Foulants Using QCM-D

Alison E. Contreras; Zvi Steiner; Jing Miao; Roni Kasher; Qilin Li

Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A Beta-Hairpin Structure in a 13-mer Peptide that Binds Alpha-Bungarotoxin with High Affinity and Neutralizes its Toxicity

Tali Scherf; Roni Kasher; Moshe Balass; Mati Fridkin; Sara Fuchs; Ephraim Katchalski-Katzir

Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs.


Biomacromolecules | 2011

Surface properties and reduced biofouling of graft-copolymers that possess oppositely charged groups.

Moshe Herzberg; Amer Sweity; Matan Brami; Yair Kaufman; Viatcheslav Freger; Gideon Oron; Sophia Belfer; Roni Kasher

Microbial biofilms and their components present a major obstacle for ensuring the long-term effectiveness of membrane processes. Graft polymerization on membrane surfaces, in general, and grafting with oppositely charged monomers, have been shown to reduce biofouling significantly. In this study, surface forces and macromolecular properties of graft copolymers that possess oppositely charged groups were related to their potent antibiofouling behavior. Graft polymerization was performed using the negatively charged 3-sulphopropyl methacrylate (SPM) and positively charged [2-(methacryloyloxy)ethyl]-trimethylammonium (MOETMA) monomers to yield a copolymer layer on polyvinylidene fluoride (PVDF) surface. Quartz crystal microbalance with dissipation monitoring (QCM-D) technology was used to monitor the reduced adsorption of extracellular polymeric substances (EPS) extracted from a membrane bioreactor (MBR) wastewater treatment facility. Complemented measurements of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy provided evaluation of the antifouling properties of the surface. Increase in water content in grafted layer exposed to 100 mM aqueous NaCl solution was observed by QCM-D. Therefore, the grafted copolymer layer is swelled in the presence of 100 mM NaCl because of reversing of polymer self-association by counterions. Force measurements by atomic force microscopy (AFM) showed an increased repulsion between a carboxylate-modified latex (CML) particle probe and a modified PVDF surface, especially in the presence of 100 mM NaCl. The hydration and swelling of the grafted polymer layer are shown to repel EPS and reduce their adsorption. Delineating the surface properties of antifouling grafted layers may lead to the design of novel antifouling surfaces.


Environmental Science & Technology | 2010

Effect of surface-exposed chemical groups on calcium-phosphate mineralization in water-treatment systems.

Zvi Steiner; Hanna Rapaport; Yoram Oren; Roni Kasher

Calcium-phosphate-scale formation on reverse osmosis (RO) membranes is a major limiting factor for cost-effective desalination of wastewater. We determined the effects of various organic chemical groups found on membrane surfaces on calcium-phosphate scaling. Langmuir films exposing different functional groups were equilibrated with a solution simulating the ionic profile of secondary effluent (SSE). Surface pressure-area (Langmuir) isotherms combined with ICP elemental analyses of the interfacial precipitate suggested acceleration of calcium-phosphate mineralization by the surface functional groups in the order: PO(4) > COOH ∼ NH(2) > COOH:NH(2) (1:1) > OH > ethylene glycol. Immersion of gold-coated silicon wafers self-assembled with different alkanethiols in SSE solution showed formation of a hydroxyapatite precipitate by X-ray diffraction and ATR-IR analysis. Data showed diverse influences of functional groups on mineralization, implying low calcium-phosphate scaling for uncharged surfaces or surfaces coated with both positively and negatively charged groups. This information is valuable for understanding scaling processes, and for designing of novel low-scaling membranes for water desalination.


Environmental Science & Technology | 2015

Diminished Swelling of Cross-Linked Aromatic Oligoamide Surfaces Revealing a New Fouling Mechanism of Reverse-Osmosis Membranes

Wang Ying; Rajender Kumar; Moshe Herzberg; Roni Kasher

Swelling of the active layer of reverse osmosis (RO) membranes has an important effect on permeate water flux. The effects of organic- and biofouling on the swelling of the RO membrane active layer and the consequent changes of permeate flux are examined here. A cross-linked aromatic oligoamide film that mimics the surface chemistry of an RO polyamide membrane was synthesized stepwise on gold-coated surfaces. Foulant adsorption to the oligoamide film and its swelling were measured with a quartz crystal microbalance, and the effects of fouling on the membranes performance were evaluated. The foulants were extracellular polymeric substances (EPS) extracted from fouled RO membranes and organic compounds of ultrafiltration permeate (UFP) from a membrane bioreactor used to treat municipal wastewater. The adsorbed foulants affected the swelling of the cross-linked oligoamide film differently. EPS had little effect on the swelling of the oligoamide film, whereas UFP significantly impaired swelling. Permeate flux declined more rapidly under UFP fouling than it did under EPS. Foulant adsorption was shown to diminish swelling of the aromatic oligoamide surfaces. Among the already known RO membrane fouling mechanisms, a novel RO fouling mechanism is proposed, in which foulant-membrane interactions hinder membrane swelling and thus increase hydraulic resistance.


Environmental Science & Technology | 2016

Saline Groundwater from Coastal Aquifers As a Source for Desalination

Shaked Stein; A. Russak; Orit Sivan; Yoseph Yechieli; Eyal Rahav; Yoram Oren; Roni Kasher

Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.


Langmuir | 2014

Small-Angle Neutron Scattering Studies of Mineralization on BSA Coated Citrate Capped Gold Nanoparticles Used as a Model Surface for Membrane Scaling in RO Wastewater Desalination

Yara Dahdal; Vitaliy Pipich; Hanna Rapaport; Yoram Oren; Roni Kasher; Dietmar Schwahn

Bovine serum albumin (BSA) coated on citrate capped gold nanoparticles (BSA-GNPs) was exposed to a simulated wastewater effluent (SSE) in order to study the mineralization and thereby mimic scaling at biofouled membranes of reverse osmosis (RO) wastewater desalination plants. RO is a leading technology of achieving freshwater quality as it has the capability of removing both dissolved inorganic salts and organic contaminants from tertiary wastewater effluents. The aim was to better understand one of the major problems facing this technology which is fouling of the membranes, mainly biofouling and scaling by calcium phosphate. The experiments were performed using the small-angle neutron scattering (SANS) technique. The nanoparticles, GNPs, stabilized by the citrate groups showed 30 Å large particles having a homogeneous distribution of gold and citrate with a gold volume fraction of the order of 1%. On the average two BSA monomers are grafted at 2.4 GNPs. The exposed BSA-GNPs to SSE solution led to immediate mineralization of stable composite particles of the order of 0.2 μm diameter and a mineral volume fraction between 50% and 80%. The volume fraction of the mineral was of the order of 10(-5), which is roughly 3 times larger but an order of magnitude smaller than the maximum possible contents of respectively calcium phosphate and calcium carbonate in the SSE solution. Considering the extreme low solubility product of calcium phosphate, we suggest total calcium phosphate and partially (5-10%) calcium carbonate formation in the presence of BSA-GNPs.


Molecular Medicine | 2015

Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

Aviv Cohen; Jenny Lerner-Yardeni; David Meridor; Roni Kasher; Ilana Nathan; Abraham H. Parola

Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17.


Langmuir | 2013

Effects of biological molecules on calcium mineral formation associated with wastewater desalination as assessed using small-angle neutron scattering.

Vitaliy Pipich; Yara Dahdal; Hanna Rapaport; Roni Kasher; Yoram Oren; Dietmar Schwahn

Calcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective desalination of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO desalination of secondary effluents of wastewater. The two proteins are prominent members of bacterial extracellular polymeric substances (EPSs), forming biofilms that are frequently associated with RO-membrane fouling during wastewater desalination. Laboratory experiments showed that both proteins in SSE solution are involved in complex mineralization processes. Only small portions of both protein fractions are involved in mineralization processes, whereas most of the protein fractions remain as monomers in solution. Contrast variation showed that composite particles of mineral and protein are formed instantaneously to a radius of gyration of about 300 Å, coexisting with particles of about μm size. After about one day, these large particles start to grow again at the expense of the 300 Å particles. The volume fraction of the 300 Å particles is of the order of 2 × 10(-4), which is too large to represent calcium phosphate such as hydroxyapatite as the only mineral present. Considering the data of mineral volume fraction obtained here as well as the solubility product of possible mineral polymorphs in the SSE solution, we suggest the formation of protein-mineral particles of hydroxyapatite and calcium carbonate during scale formation.


RSC Advances | 2016

Attachment of antimicrobial peptides to reverse osmosis membranes by Cu(I)-catalyzed 1,3-dipolar alkyne–azide cycloaddition

Elias J. Bodner; Nitzan Shtreimer Kandiyote; Marina-Yamit Lutskiy; H. Bauke Albada; Nils Metzler-Nolte; Wolfgang Uhl; Roni Kasher; Christopher J. Arnusch

Biofilms are detrimental to many industrial systems that include reverse osmosis (RO) membranes. Accordingly, the development of surfaces with inherently bactericidal properties has attracted much research attention. Antimicrobial peptides (AMPs) have been shown to be potent antimicrobial and anti-biofilm agents. In the current study, we developed an efficient synthetic procedure for AMP immobilization on RO membranes which is based on the copper(I) mediated Huisgen 1,3-dipolar cycloaddition reaction (“click chemistry”). Optimization of the reaction temperature, time, peptide and catalyst concentration resulted in efficient coupling of peptides to the membrane surface. The reaction conditions did not affect membrane salt rejection, and resulted in only a slight reduction (14%) in pure water flux at the highest temperature tested (80 °C). Short AMPs that consisted of Arg–Trp repeats were attached onto a virgin RO membrane surface, and an RO membrane surface coated with a copolymer of methacrylic acid and poly(ethylene glycol)methacrylate. In a bacterial contact killing assay, the resulting peptide-modified membrane surfaces showed increased antimicrobial activity especially on the virgin membrane as compared to unmodified membranes. This study provides a basis for further research into the attachment of a wide variety of antimicrobials or other entities to surfaces.

Collaboration


Dive into the Roni Kasher's collaboration.

Top Co-Authors

Avatar

Yoram Oren

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Dietmar Schwahn

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Arnusch

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Vitaliy Pipich

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Abraham H. Parola

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hanna Rapaport

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yara Dahdal

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Aviv Cohen

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

David Meridor

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ilana Nathan

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge