Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rooma Desai is active.

Publication


Featured researches published by Rooma Desai.


Molecular Pharmacology | 2008

Tryptophan Mutations at Azi-Etomidate Photo-Incorporation Sites on α1 or β2 Subunits Enhance GABAA Receptor Gating and Reduce Etomidate Modulation

Deirdre S. Stewart; Rooma Desai; Qi Cheng; Aiping Liu; Stuart A. Forman

The potent general anesthetic etomidate produces its effects by enhancing GABAA receptor activation. Its photolabel analog [3H]azi-etomidate labels residues within transmembrane domains on α and β subunits: αMet236 and βMet286. We hypothesized that these methionines contribute to etomidate sites formed at α-β subunit interfaces and that increasing side-chain bulk and hydrophobicity at either locus would mimic etomidate binding and block etomidate effects. Channel activity was electrophysiologically quantified in α1β2γ2L receptors with α1M236W or β2M286W mutations, in both the absence and the presence of etomidate. Measurements included spontaneous activation, GABA EC50, etomidate agonist potentiation, etomidate direct activation, and rapid macrocurrent kinetics. Both α1M236W and β2M286W mutations induced spontaneous channel opening, lowered GABA EC50, increased maximal GABA efficacy, and slowed current deactivation, mimicking effects of etomidate on α1β2γ2L channels. These changes were larger with α1M236W than with β2M286W. Etomidate (3.2 μM) reduced GABA EC50 much less in α1M236Wβ2γ2L receptors (2-fold) than in wild type (23-fold). However, etomidate was more potent and efficacious in directly activating α1M236Wβ2γ2L compared with wild type. In α1β2M286Wγ2L receptors, etomidate induced neither agonist-potentiation nor direct channel activation. These results support the hypothesis that α1Met236 and β2Met286 are within etomidate sites that allosterically link to channel gating. Although α1M236W produced the larger impact on channel gating, β2M286W produced more profound changes in etomidate sensitivity, suggesting a dominant role in drug binding. Furthermore, quantitative mechanistic analysis demonstrated that wild-type and mutant results are consistent with the presence of only one class of etomidate sites mediating both agonist potentiation and direct activation.


Hearing Research | 2005

Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels.

Leonard K. Kaczmarek; Arin Bhattacharjee; Rooma Desai; Li Gan; Ping Song; Christian A. von Hehn; Matthew D. Whim; Bo Yang

The firing patterns of neurons in central auditory pathways encode specific features of sound stimuli, such as frequency, intensity and localization in space. The generation of the appropriate pattern depends, to a major extent, on the properties of the voltage-dependent potassium channels in these neurons. The mammalian auditory pathways that compute the direction of a sound source are located in the brainstem and include the connection from bushy cells in the anteroventral cochlear nucleus (AVCN) to the principal neurons of the medial nucleus of the trapezoid body (MNTB). To preserve the fidelity of timing of action potentials that is required for sound localization, these neurons express several types of potassium channels, including the Kv3 and Kv1 families of voltage-dependent channels and the Slick and Slack sodium-dependent channels. These channels determine the pattern of action potentials and the amount of neurotransmitter released during repeated stimulation. The amplitude of currents carried by one of these channels, the Kv3.1b channel, is regulated in the short term by protein phosphorylation, and in the long term, by changes in gene expression, such that the intrinsic excitability of the neurons is constantly being regulated by the ambient auditory environment.


Protein Science | 2010

High‐level expression and purification of Cys‐loop ligand‐gated ion channels in a tetracycline‐inducible stable mammalian cell line: GABAA and serotonin receptors

Zuzana Dostalova; Aiping Liu; Xiaojuan Zhou; Sarah L. Farmer; Eileen S. Krenzel; Enrique Arevalo; Rooma Desai; Paula L. Feinberg-Zadek; Paul Davies; Innocent H. Yamodo; Stuart A. Forman; Keith W. Miller

The human neuronal Cys‐loop ligand‐gated ion channel superfamily of ion channels are important determinants of human behavior and the target of many drugs. It is essential for their structural characterization to achieve high‐level expression in a functional state. The aim of this work was to establish stable mammalian cell lines that enable high‐level heterologous production of pure receptors in a state that supports agonist‐induced allosteric conformational changes. In a tetracycline‐inducible stable human embryonic kidney cells (HEK293S) cell line, GABAA receptors containing α1 and β3 subunits could be expressed with specific activities of 29–34 pmol/mg corresponding to 140–170 pmol/plate, the highest expression level reported so far. Comparable figures for serotonin (5‐HT3A) receptors were 49–63 pmol/mg and 245–315 pmol/plate. The expression of 10 nmol of either receptor in suspension in a bioreactor required 0.3–3.0 L. Both receptor constructs had a FLAG epitope inserted at the N‐terminus and could be purified in one step after solubilization using ANTI‐FLAG affinity chromatography with yields of 30–40%. Purified receptors were functional. Binding of the agonist [3H]muscimol to the purified GABAAR was enhanced allosterically by the general anesthetic etomidate, and purified 5‐hydroxytryptamine‐3A receptor supported serotonin‐stimulated cation flux when reconstituted into lipid vesicles.


Journal of Biological Chemistry | 2008

Protein Kinase C Modulates Inactivation of Kv3.3 Channels

Rooma Desai; Jack Kronengold; Jianfeng Mei; Stuart A. Forman; Leonard K. Kaczmarek

Modulation of some Kv3 family potassium channels by protein kinase C (PKC) regulates their amplitude and kinetics and adjusts firing patterns of auditory neurons in response to stimulation. Nevertheless, little is known about the modulation of Kv3.3, a channel that is widely expressed throughout the nervous system and is the dominant Kv3 family member in auditory brainstem. We have cloned the cDNA for the Kv3.3 channel from mouse brain and have expressed it in a mammalian cell line and in Xenopus oocytes to characterize its biophysical properties and modulation by PKC. Kv3.3 currents activate at positive voltages and undergo inactivation with time constants of 150-250 ms. Activators of PKC increased current amplitude and removed inactivation of Kv3.3 currents, and a specific PKC pseudosubstrate inhibitor peptide prevented the effects of the activators. Elimination of the first 78 amino acids of the N terminus of Kv3.3 produced noninactivating currents suggesting that PKC modulates N-type inactivation, potentially by phosphorylation of sites in this region. To identify potential phosphorylation sites, we investigated the response of channels in which serines in this N-terminal domain were subjected to mutagenesis. Our results suggest that serines at positions 3 and 9 are potential PKC phosphorylation sites. Computer simulations of model neurons suggest that phosphorylation of Kv3.3 by PKC may allow neurons to maintain action potential height during stimulation at high frequencies, and may therefore contribute to stimulus-induced changes in the intrinsic excitability of neurons such as those of the auditory brainstem.


Journal of Medicinal Chemistry | 2010

p-Trifluoromethyldiazirinyl-etomidate: a potent photoreactive general anesthetic derivative of etomidate that is selective for ligand-gated cationic ion channels

S. Shaukat Husain; Deirdre S. Stewart; Rooma Desai; Ayman K. Hamouda; S. Guo-Dong Li; Elizabeth W. Kelly; Zuzana Dostalova; Xiaojuan Zhou; Joseph F. Cotten; Douglas A. Raines; Richard W. Olsen; Jonathan B. Cohen; Stuart A. Forman; Keith W. Miller

We synthesized the R- and S-enantiomers of ethyl 1-(1-(4-(3-((trifluoromethyl)-3H-diazirin-3-yl)phenyl)ethyl)-1H-imidazole-5-carboxylate (trifluoromethyldiazirinyl-etomidate), or TFD-etomidate, a novel photoactivable derivative of the stereoselective general anesthetic etomidate (R-(2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate)). Anesthetic potency was similar to etomidates, but stereoselectivity was reversed and attenuated. Relative to etomidate, TFD-etomidate was a more potent inhibitor of the excitatory receptors, nAChR (nicotinic acetylcholine receptor) ((alpha1)(2)beta1delta1gamma1) and 5-HT(3A)R (serotonin type 3A receptor), causing significant inhibition at anesthetic concentrations. S- but not R-TFD-etomidate enhanced currents elicited from inhibitory alpha1beta2gamma2L GABA(A)Rs by low concentrations of GABA, but with a lower efficacy than R-etomidate, and site-directed mutagenesis suggests they act at different sites. [(3)H]TFD-etomidate photolabeled the alpha-subunit of the nAChR in a manner allosterically regulated by agonists and noncompetitive inhibitors. TFD-etomidates novel pharmacology is unlike that of etomidate derivatives with photoactivable groups in the ester position, which behave like etomidate, suggesting that it will further enhance our understanding of anesthetic mechanisms.


Journal of Biological Chemistry | 2015

Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β- Interface.

Selwyn S. Jayakar; Xiaojuan Zhou; Pavel Y. Savechenkov; David C. Chiara; Rooma Desai; Karol S. Bruzik; Keith W. Miller; Jonathan B. Cohen

Background: For some chiral barbiturates, one isomer potentiates and the other inhibits GABA responses by binding to unknown sites. Results: A photoreactive convulsant barbiturate identifies a transmembrane intersubunit-binding site between the γ and β subunits. Conclusion: Positive and negative allosteric modulators can bind to a common intersubunit site. Significance: This study defines a novel mode of regulation of GABAAR responses. In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators.


Molecular Pharmacology | 2013

State-Dependent Etomidate Occupancy of its Allosteric Agonist Sites Measured in a Cysteine-Substituted GABAA Receptor

Deirdre S. Stewart; Mayo Hotta; Rooma Desai; Stuart A. Forman

A central axiom of ligand-receptor theory is that agonists bind more tightly to active than to inactive receptors. However, measuring agonist affinity in inactive receptors is confounded by concomitant activation. We identified a cysteine substituted mutant γ-aminobutyric acid type A (GABAA) receptor with unique characteristics allowing the determination of allosteric agonist site occupancy in both inactive and active receptors. Etomidate, the allosteric agonist, is an anesthetic that activates or modulates α1β2γ2L GABAA receptors via transmembrane sites near β2M286 residues in M3 domains. Voltage-clamp electrophysiology studies of α1β2M286Cγ2L receptors show that GABA is an efficacious agonist and that etomidate modulates GABA-activated activity, but direct etomidate agonism is absent. Quantitative analysis of mutant activity using an established Monod-Wyman-Changeux (MWC) allosteric model indicates that the intrinsic efficacy of etomidate, defined as its relative affinity for active versus inactive receptors, is lower than in wild-type receptors. Para-chloromercuribenzene sulfonate covalently modifies β2M286C side-chain sulfhydryls, irreversibly altering GABA-induced currents. Etomidate concentration dependently reduces the apparent rate of β2M286C-pCMBS bond formation, tracked electrophysiologically. High etomidate concentrations completely protect the β2M286C suflhydryl from covalent modification, suggesting close steric interactions. The 50% protective etomidate concentration (PC50) is 14 μM in inactive receptors and 1.1 to 2.2 μM during GABA-activation, experimentally demonstrating that activated receptors bind etomidate more avidly than do inactive receptors. The experimental PC50 values are remarkably close to, and therefore validate, MWC model predictions for etomidate dissociation constants in both inactive and active receptors. Our results support MWC models as valid frameworks for understanding the agonism, coagonism, and modulation of ligand-gated ion channels.


Journal of Biological Chemistry | 2013

Cysteine Substitutions Define Etomidate Binding and Gating Linkages in the α-M1 Domain of γ-Aminobutyric Acid Type A (GABAA) Receptors

Deirdre S. Stewart; Mayo Hotta; Guo-Dong Li; Rooma Desai; David C. Chiara; Richard W. Olsen; Stuart A. Forman

Background: Etomidate induces anesthesia via intersubunit transmembrane sites in GABAA receptors. Results: In receptors engineered with α-M1 domain cysteines, GABA accelerates modification. Etomidate inhibits modification at three positions. Conclusion: Etomidate contacts a subdomain of α-M1 linked to channel gating, consistent with in silico model docking. Significance: We identify new structures that both bind anesthetic and modulate channel gating through rearrangement. Etomidate is a potent general anesthetic that acts as an allosteric co-agonist at GABAA receptors. Photoreactive etomidate derivatives labeled αMet-236 in transmembrane domain M1, which structural models locate in the β+/α- subunit interface. Other nearby residues may also contribute to etomidate binding and/or transduction through rearrangement of the site. In human α1β2γ2L GABAA receptors, we applied the substituted cysteine accessibility method to α1-M1 domain residues extending from α1Gln-229 to α1Gln-242. We used electrophysiology to characterize each mutants sensitivity to GABA and etomidate. We also measured rates of sulfhydryl modification by p-chloromercuribenzenesulfonate (pCMBS) with and without GABA and tested if etomidate blocks modification of pCMBS-accessible cysteines. Cys substitutions in the outer α1-M1 domain impaired GABA activation and variably affected etomidate sensitivity. In seven of eight residues where pCMBS modification was evident, rates of modification were accelerated by GABA co-application, indicating that channel activation increases water and/or pCMBS access. Etomidate reduced the rate of modification for cysteine substitutions at α1Met-236, α1Leu-232 and α1Thr-237. We infer that these residues, predicted to face β2-M3 or M2 domains, contribute to etomidate binding. Thus, etomidate interacts with a short segment of the outer α1-M1 helix within a subdomain that undergoes significant structural rearrangement during channel gating. Our results are consistent with in silico docking calculations in a homology model that orient the long axis of etomidate approximately orthogonal to the transmembrane axis.


Cell | 2016

Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating

Yalan Zhang; Xiao-Feng Zhang; Matthew R. Fleming; Anahita Amiri; Lynda El-Hassar; Alexei Surguchev; Callen Hyland; David P. Jenkins; Rooma Desai; Maile R. Brown; Valeswara-Rao Gazula; Michael F. Waters; Charles H. Large; Tamas L. Horvath; Dhasakumar Navaratnam; Flora M. Vaccarino; Paul Forscher; Leonard K. Kaczmarek

Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.


Protein Science | 2014

Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state

Zuzana Dostalova; Xiaojuan Zhou; Aiping Liu; Xi Zhang; Yinghui Zhang; Rooma Desai; Stuart A. Forman; Keith W. Miller

Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.

Collaboration


Dive into the Rooma Desai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith W. Miller

University of Missouri–St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karol S. Bruzik

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Pavel Y. Savechenkov

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge