Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roozbeh Kiani is active.

Publication


Featured researches published by Roozbeh Kiani.


Neuron | 2008

Matching categorical object representations in inferior temporal cortex of man and monkey.

Nikolaus Kriegeskorte; Marieke Mur; Douglas A. Ruff; Roozbeh Kiani; Jerzy Bodurka; Hossein Esteky; Keiji Tanaka; Peter A. Bandettini

Inferior temporal (IT) object representations have been intensively studied in monkeys and humans, but representations of the same particular objects have never been compared between the species. Moreover, ITs role in categorization is not well understood. Here, we presented monkeys and humans with the same images of real-world objects and measured the IT response pattern elicited by each image. In order to relate the representations between the species and to computational models, we compare response-pattern dissimilarity matrices. IT response patterns form category clusters, which match between man and monkey. The clusters correspond to animate and inanimate objects; within the animate objects, faces and bodies form subclusters. Within each category, IT distinguishes individual exemplars, and the within-category exemplar similarities also match between the species. Our findings suggest that primate IT across species may host a common code, which combines a categorical and a continuous representation of objects.


Science | 2009

Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex

Roozbeh Kiani; Michael N. Shadlen

Decisive Monkeys Decision-making is a central theme in current research in cognitive neuroscience. Behavioral protocols have provided an entry into explorations of the neural processes that underlie decision-making. Empirical studies have provided support for a diffusion model in which information accumulates over time until a threshold is reached, with noisiness in the inputs related to decision errors. Kiani and Shadlen (p. 759) developed a behavioral task to study choice certainty and identified the corresponding neuronal representations in monkeys. The monkeys were allowed to choose to opt out of an uncertain, higher reward choice in favor of a certain, lower payoff. The same neurons that encoded the information used to make a choice also encoded the extent of certainty, which in humans would be described as the degree of confidence in ones decision. Neurons in the primate parietal cortex encode information required to make a decision and also the certainty of that choice. The degree of confidence in a decision provides a graded and probabilistic assessment of expected outcome. Although neural mechanisms of perceptual decisions have been studied extensively in primates, little is known about the mechanisms underlying choice certainty. We have shown that the same neurons that represent formation of a decision encode certainty about the decision. Rhesus monkeys made decisions about the direction of moving random dots, spanning a range of difficulties. They were rewarded for correct decisions. On some trials, after viewing the stimulus, the monkeys could opt out of the direction decision for a small but certain reward. Monkeys exercised this option in a manner that revealed their degree of certainty. Neurons in parietal cortex represented formation of the direction decision and the degree of certainty underlying the decision to opt out.


Neuron | 2008

Probabilistic Population Codes for Bayesian Decision Making

Jeffrey M. Beck; Wei Ji Ma; Roozbeh Kiani; Timothy D. Hanks; Anne K. Churchland; Jamie D. Roitman; Michael N. Shadlen; P.E. Latham; Alexandre Pouget

When making a decision, one must first accumulate evidence, often over time, and then select the appropriate action. Here, we present a neural model of decision making that can perform both evidence accumulation and action selection optimally. More specifically, we show that, given a Poisson-like distribution of spike counts, biological neural networks can accumulate evidence without loss of information through linear integration of neural activity and can select the most likely action through attractor dynamics. This holds for arbitrary correlations, any tuning curves, continuous and discrete variables, and sensory evidence whose reliability varies over time. Our model predicts that the neurons in the lateral intraparietal cortex involved in evidence accumulation encode, on every trial, a probability distribution which predicts the animals performance. We present experimental evidence consistent with this prediction and discuss other predictions applicable to more general settings.


The Journal of Neuroscience | 2008

Bounded Integration in Parietal Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the Environment

Roozbeh Kiani; Timothy D. Hanks; Michael N. Shadlen

Decisions about sensory stimuli are often based on an accumulation of evidence in time. When subjects control stimulus duration, the decision terminates when the accumulated evidence reaches a criterion level. Under many natural circumstances and in many laboratory settings, the environment, rather than the subject, controls the stimulus duration. In these settings, it is generally assumed that subjects commit to a choice at the end of the stimulus stream. Indeed, failure to benefit from the full stream of information is interpreted as a sign of imperfect accumulation or memory leak. Contrary to these assumptions, we show that monkeys performing a direction discrimination task commit to a choice when the accumulated evidence reaches a threshold level (or bound), sometimes long before the end of stimulus. This bounded accumulation of evidence is reflected in the activity of neurons in the lateral intraparietal cortex. Thus, the readout of visual cortex embraces a termination rule to limit processing even when potentially useful information is available.


Nature | 2009

Changes of mind in decision-making.

Arbora Resulaj; Roozbeh Kiani; Daniel M. Wolpert; Michael N. Shadlen

A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.


Neuron | 2013

Decision Making as a Window on Cognition

Michael N. Shadlen; Roozbeh Kiani

A decision is a commitment to a proposition or plan of action based on information and values associated with the possible outcomes. The process operates in a flexible timeframe that is free from the immediacy of evidence acquisition and the real time demands of action itself. Thus, it involves deliberation, planning, and strategizing. This Perspective focuses on perceptual decision making in nonhuman primates and the discovery of neural mechanisms that support accuracy, speed, and confidence in a decision. We suggest that these mechanisms expose principles of cognitive function in general, and we speculate about the challenges and directions before the field.


The Journal of Neuroscience | 2011

Elapsed Decision Time Affects the Weighting of Prior Probability in a Perceptual Decision Task

Timothy D. Hanks; Mark E. Mazurek; Roozbeh Kiani; Elisabeth Hopp; Michael N. Shadlen

Decisions are often based on a combination of new evidence with prior knowledge of the probable best choice. Optimal combination requires knowledge about the reliability of evidence, but in many realistic situations, this is unknown. Here we propose and test a novel theory: the brain exploits elapsed time during decision formation to combine sensory evidence with prior probability. Elapsed time is useful because (1) decisions that linger tend to arise from less reliable evidence, and (2) the expected accuracy at a given decision time depends on the reliability of the evidence gathered up to that point. These regularities allow the brain to combine prior information with sensory evidence by weighting the latter in accordance with reliability. To test this theory, we manipulated the prior probability of the rewarded choice while subjects performed a reaction-time discrimination of motion direction using a range of stimulus reliabilities that varied from trial to trial. The theory explains the effect of prior probability on choice and reaction time over a wide range of stimulus strengths. We found that prior probability was incorporated into the decision process as a dynamic bias signal that increases as a function of decision time. This bias signal depends on the speed–accuracy setting of human subjects, and it is reflected in the firing rates of neurons in the lateral intraparietal area (LIP) of rhesus monkeys performing this task.


eLife | 2014

A neural mechanism of speed-accuracy tradeoff in macaque area LIP

Timothy D. Hanks; Roozbeh Kiani; Michael N. Shadlen

Decision making often involves a tradeoff between speed and accuracy. Previous studies indicate that neural activity in the lateral intraparietal area (LIP) represents the gradual accumulation of evidence toward a threshold level, or evidence bound, which terminates the decision process. The level of this bound is hypothesized to mediate the speed-accuracy tradeoff. To test this, we recorded from LIP while monkeys performed a motion discrimination task in two speed-accuracy regimes. Surprisingly, the terminating threshold levels of neural activity were similar in both regimes. However, neurons recorded in the faster regime exhibited stronger evidence-independent activation from the beginning of decision formation, effectively reducing the evidence-dependent neural modulation needed for choice commitment. Our results suggest that control of speed vs accuracy may be exerted through changes in decision-related neural activity itself rather than through changes in the threshold applied to such neural activity to terminate a decision. DOI: http://dx.doi.org/10.7554/eLife.02260.001


Neuron | 2014

Effects of Cortical Microstimulation on Confidence in a Perceptual Decision

Christopher R. Fetsch; Roozbeh Kiani; William T. Newsome; Michael N. Shadlen

Decisions are often associated with a degree of certainty, or confidence--an estimate of the probability that the chosen option will be correct. Recent neurophysiological results suggest that the central processing of evidence leading to a perceptual decision also establishes a level of confidence. Here we provide a causal test of this hypothesis by electrically stimulating areas of the visual cortex involved in motion perception. Monkeys discriminated the direction of motion in a noisy display and were sometimes allowed to opt out of the direction choice if their confidence was low. Microstimulation did not reduce overall confidence in the decision but instead altered confidence in a manner that mimicked a change in visual motion, plus a small increase in sensory noise. The results suggest that the same sensory neural signals support choice, reaction time, and confidence in a decision and that artificial manipulation of these signals preserves the quantitative relationship between accumulated evidence and confidence.


Cerebral Cortex | 2014

Cortical Reinstatement Mediates the Relationship Between Content-Specific Encoding Activity and Subsequent Recollection Decisions

Alan M. Gordon; Jesse Rissman; Roozbeh Kiani; Anthony D. Wagner

Episodic recollection entails the conscious remembrance of event details associated with previously encountered stimuli. Recollection depends on both the establishment of cortical representations of event features during stimulus encoding and the cortical reinstatement of these representations at retrieval. Here, we used multivoxel pattern analyses of functional magnetic resonance imaging data to examine how cortical and hippocampal activity at encoding and retrieval drive recollective memory decisions. During encoding, words were associated with face or scene source contexts. At retrieval, subjects were cued to recollect the source associate of each presented word. Neurally derived estimates of encoding strength and pattern reinstatement in occipitotemporal cortex were computed for each encoding and retrieval trial, respectively. Analyses demonstrated that (1) cortical encoding strength predicted subsequent memory accuracy and reaction time, (2) encoding strength predicted encoding-phase hippocampal activity, and (3) encoding strength and retrieval-phase hippocampal activity predicted the magnitude of cortical reinstatement. Path analyses further indicated that cortical reinstatement partially mediated both the effect of cortical encoding strength and the effect of retrieval-phase hippocampal activity on subsequent source memory performance. Taken together, these results indicate that memory-guided decisions are driven in part by a pathway leading from hippocampally linked cortical encoding of event attributes to hippocampally linked cortical reinstatement at retrieval.

Collaboration


Dive into the Roozbeh Kiani's collaboration.

Top Co-Authors

Avatar

Michael N. Shadlen

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Anne K. Churchland

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Newsome

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Keiji Tanaka

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher R. Fetsch

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge