Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rory A. Fisher is active.

Publication


Featured researches published by Rory A. Fisher.


Journal of Biological Chemistry | 1996

Molecular Cloning of a Novel Variant of the Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Receptor That Stimulates Calcium Influx by Activation of L-type Calcium Channels

Tapan K. Chatterjee; Ram V. Sharma; Rory A. Fisher

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel neuropeptide that produces its biological effects by interacting with G protein-coupled receptors. Molecular cloning of the PACAP receptor revealed the existence of five splice variant receptor forms differing in the third intracellular loop region, with four variants activating both adenylyl cyclase and phosphoinositide phospholipase C and one variant activating only adenylyl cyclase (Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., and Journot, L. (1993) Nature365, 170-175). Here, we report cloning of a novel PACAP receptor variant, designated PACAPR TM4 (transmembrane domain IV), that differs from the previously cloned short form of the PACAP receptor (PACAPR) primarily by discrete sequences located in transmembrane domains II and IV. Reverse transcriptase-polymerase chain reaction and primer extension analyses demonstrated tissue-specific differential expression of mRNAs encoding PACAPR TM4 and splice variant forms of the PACAP receptor. PACAPR TM4 and PACAPR possess identical intracellular domains, implicated as primary determinants of G protein recognition by rhodopsin-like receptors. However, unlike the PACAPR, PACAPR TM4 does not activate either adenylyl cyclase or phosphoinositide phospholipase C in response to PACAP in either transient or stable expression systems. However, PACAP stimulates increases in [Ca2+]i in cells expressing PACAPR TM4 by activating L-type Ca2+ channels, a response not elicited by stimulation with vasoactive intestinal polypeptide. The signaling phenotype of PACAPR TM4 is characteristic of the PACAP receptor involved in regulation of insulin secretion from pancreatic β islets, a tissue expressing transcripts for PACAPR TM4 but not for PACAPR or its longer splice variant forms. These findings are consistent with a role of PACAPR TM4 in the physiological control of insulin release by PACAP in β-islet cells. The finding that PACAPR TM4 has a unique signaling phenotype, although it possesses intracellular domains identical to those of the PACAPR, suggests that receptor-G protein recognition by rhodopsin-like receptors can be determined by sequences other than those located in intracellular receptor domains.


Journal of Biological Chemistry | 2000

Cytoplasmic, nuclear, and golgi localization of RGS proteins. Evidence for N-terminal and RGS domain sequences as intracellular targeting motifs.

Tapan K. Chatterjee; Rory A. Fisher

RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Gα subunits, thereby accelerating the turn-off mechanism of Gα and terminating signaling by both Gα and Gβγ subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.


Journal of Biological Chemistry | 1997

A Truncated Form of RGS3 Negatively Regulates G Protein-coupled Receptor Stimulation of Adenylyl Cyclase and Phosphoinositide Phospholipase C

Tapan K. Chatterjee; Alex K. Eapen; Rory A. Fisher

Identification of a new family of proteins (RGS proteins) that function as negative regulators ofG protein signaling has sparked new understanding of desensitization of this signaling process. Recent studies with several mammalian RGS proteins has delineated their ability to interact with and function as GTPase-activating proteins specifically for G proteins in the Gi family. Here, we investigated the functional activity of RGS3 and a truncated form of RGS3 on G protein-coupled receptor-mediated activation of adenylyl cyclase, phosphoinositide phospholipase C, and mitogen-activated protein kinase in intact cells. Polymerase chain reaction and 5′-rapid amplification of cDNA ends analyses revealed the tissue-specific expression of a short form of the RGS3 transcript that encodes the approximate carboxyl-terminal half of RGS3. This truncated form of RGS3 (RGS3T) was shown recently to function as a negative regulator of pheromone signaling in yeast (Druey, K. M., Blumer, K. J., Kang, V. R., and Kehrl, J. H. (1996) Nature 379, 742–746). Baby hamster kidney cells transiently transfected with RGS3T cDNA exhibited a pronounced impairment in platelet-activating factor receptor-stimulated inositol phosphate production, a pertussis toxin-insensitive response. Similarly, calcitonin gene-related peptide receptor-stimulated increases in intracellular cAMP and pituitary adenylate-cyclase activating polypeptide receptor-stimulated increases in both cAMP and inositol phosphates were reduced significantly in RGS3T transfectants compared with vector-transfected control cells. In contrast, baby hamster kidney cells transfected with the full-length RGS3 cDNA showed no impairment in cAMP and inositol phosphate production mediated by these G protein-coupled receptors. However, lysophosphatidic acid receptor-stimulated phosphorylation of endogenous ERK1 and ERK2 was impaired markedly in both RGS3 and RGS3T transfectants, demonstrating the functional ability of both RGS forms to modulate Gi-mediated signaling. These results provide the first evidence for regulatory effects of an RGS protein on Gs- and Gq-mediated signaling in intact cells and document that the carboxyl-terminal region of RGS3 comprises the structural domain for this activity.


Journal of Biological Chemistry | 2000

Novel Alternative Splicing and Nuclear Localization of HumanRGS12 Gene Products

Tapan K. Chatterjee; Rory A. Fisher

RGS proteins are GTPase-activating proteins for certain Gα subunits, accelerating the shutoff mechanism of G protein signaling, and also may interact with receptors and effectors to modulate G protein signaling. Here, we report identification of 12 distinct transcripts of human RGS12 that arise by unusually complex splicing of the RGS12 gene, which spans 70 kilobase pairs of genomic DNA and contains 16 exons. These transcripts arise by both cis- andtrans-splicing mechanisms, are expressed in a tissue-specific manner, and encode proteins ranging in size from 356 to 1447 amino acids. Both 5′- and 3′-splicing of two primary RGS12 transcripts occur to generate RGS12 mRNAs encoding proteins with four distinct N-terminal domains, three distinct C-terminal domains, and a common internal region where the semiconserved RGS domain is located. Confocal microscopy and subcellular fractionation of COS-7 cells expressing RGS12 proteins with three different N termini (brain (B), peripheral (P), and trans-spliced (TS)) and a shared short (S) C-terminal domain demonstrated exclusive nuclear localization of these proteins and an influence of the N-terminal region on the pattern of intranuclear distribution. Both native RGS12TS-S in HEK-293T cells and ectopically expressed RGS12TS-S localized to discrete nuclear foci (dots), a characteristic of various tumor suppressor proteins. Subnuclear localization of RGS12TS-S into nuclear dots was cell cycle-dependent. Native RGS12TS-S associated with the metaphase chromosome during mitosis, and ectopically expressed RGS12TS-S induced formation of abnormally shaped and multiple nuclei in COS-7 cells. Expression of RGS12 proteins with long and intermediate C-terminal domains was not observed in COS-7 cells, suggesting that 3′-splicing of RGS12 transcripts may influence the expression or stability of the encoded proteins. These results document extraordinary structural complexity in the RGS12 family and the role of alternative splicing and cell cycle-dependent mechanisms in expression and subnuclear targeting of RGS12 proteins.


Circulation Research | 2010

RGS6, a Modulator of Parasympathetic Activation in Heart

Jianqi Yang; Jie Huang; Biswanath Maity; Zhan Gao; Ramón A. Lorca; Hjalti Gudmundsson; Jingdong Li; Adele Stewart; Paari Dominic Swaminathan; Stella-Rita Ibeawuchi; Andrew J. Shepherd; Ching-Kang Chen; William Kutschke; Peter J. Mohler; Durga P. Mohapatra; Mark E. Anderson; Rory A. Fisher

Rationale: Parasympathetic regulation of heart rate is mediated by acetylcholine binding to G protein–coupled muscarinic M2 receptors, which activate heterotrimeric Gi/o proteins to promote G protein–coupled inwardly rectifying K+ (GIRK) channel activation. Regulator of G protein signaling (RGS) proteins, which function to inactivate G proteins, are indispensable for normal parasympathetic control of the heart. However, it is unclear which of the more than 20 known RGS proteins function to negatively regulate and thereby ensure normal parasympathetic control of the heart. Objective: To examine the specific contribution of RGS6 as an essential regulator of parasympathetic signaling in heart. Methods and Results: We developed RGS6 knockout mice to determine the functional impact of loss of RGS6 on parasympathetic regulation of cardiac automaticity. RGS6 exhibited a uniquely robust expression in the heart, particularly in sinoatrial and atrioventricular nodal regions. Loss of RGS6 provoked dramatically exaggerated bradycardia in response to carbachol in mice and isolated perfused hearts and significantly enhanced the effect of carbachol on inhibition of spontaneous action potential firing in sinoatrial node cells. Consistent with a role of RGS6 in G protein inactivation, RGS6-deficient atrial myocytes exhibited a significant reduction in the time course of acetylcholine-activated potassium current (IKACh) activation and deactivation, as well as the extent of IKACh desensitization. Conclusions: RGS6 is a previously unrecognized, but essential, regulator of parasympathetic activation in heart, functioning to prevent parasympathetic override and severe bradycardia. These effects likely result from actions of RGS6 as a negative regulator of G protein activation of GIRK channels.


FEBS Letters | 2000

Crystal structure of S-glutathiolated carbonic anhydrase III

Robert J. Mallis; Bradley W. Poland; Tapan K. Chatterjee; Rory A. Fisher; Steven Darmawan; Richard B. Honzatko; James A. Thomas

S‐Glutathiolation of carbonic anhydrase III (CAIII) occurs rapidly in hepatocytes under oxidative stress. The crystal structure of the S‐glutathiolated CAIII from rat liver reveals covalent adducts on cysteines 183 and 188. Electrostatic charge and steric contacts at each modification site inversely correlate with the relative rates of reactivity of these cysteines toward glutathione (GSH). Diffuse electron density associated with the GSH adducts suggests a lack of preferred bonding interactions between CAIII and the glutathionyl moieties. Hence, the GSH adducts are available for binding by a protein capable of reducing this mixed disulfide. These properties are consistent with the participation of CAIII in the protection/recovery from the damaging effects of oxidative agents.


Biochimica et Biophysica Acta | 1985

Protein mixed-disulfides in cardiac cells.S-thiolation of soluble proteins in response to diamide

Linda M. Grimm; Mark W. Collison; Rory A. Fisher; James A. Thomas

Protein mixed-disulfides in cultured rat heart cells were analyzed by gel electrophoresis under conditions that eliminated artifactual formation of these protein derivatives. Protein S-thiolation (protein mixed-disulfide formation) was detectable under normal culture conditions. Diamide oxidized intracellular glutathione in these cells and produced extensive protein S-thiolation. The specificity of this protein modification indicates a role in the regulation of cardiac metabolism.


Journal of Biological Chemistry | 2002

RGS6 interacts with SCG10 and promotes neuronal differentiation. Role of the G gamma subunit-like (GGL) domain of RGS6.

Zhengyu Liu; Tapan K. Chatterjee; Rory A. Fisher

RGS proteins comprise a large family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. RGS6 is a member of the R7 RGS protein subfamily endowed with DEP (disheveled, Egl-10,pleckstrin) and GGL (G proteingamma subunit-like) domains in addition to the RGS domain present in all RGS proteins. RGS6 exists in multiple splice variant forms with identical RGS domains but possessing complete or incomplete GGL domains and distinct N- and C-terminal domains. Here we report that RGS6 interacts with SCG10, a neuronal growth-associated protein. Using yeast two-hybrid analysis to map protein interaction domains, we identified the GGL domain of RGS6 as the SCG10-interacting region and the stathmin domain of SCG10 as the RGS6-interacting region. Pull-down studies in COS-7 cells expressing SCG10 and RGS6 splice variants revealed that SCG10 co-precipitated RGS6 proteins with complete GGL domains but not those with incomplete GGL domains, andvice versa. Expression of SCG10-interacting forms of RGS6 with SCG10 in PC12 or COS-7 cells resulted in co-localization of both proteins. RGS6 potentiated the ability of SCG10 to disrupt microtubule organization in PC12 and COS-7 cells. Furthermore, expression of SCG10 and RGS6 each enhanced NGF-induced PC12 cell differentiation, and co-expression of SCG10 with RGS6 produced synergistic effects on NGF-induced PC12 differentiation. These effects of RGS6 on microtubules and neuronal differentiation were observed only with RGS6 proteins with complete GGL domains. Mutation of a critical residue required for interaction of RGS proteins with G proteins did not affect the ability of RGS6 to induce neuronal differentiation. These findings identify SCG10 as a binding partner for the GGL domain of RGS6 and provide the first evidence for regulatory effects of an RGS protein on neuronal differentiation. Our results suggest that RGS6 induces neuronal differentiation by a novel mechanism involving interaction of SCG10 with its GGL domain and independent of RGS6 interactions with heterotrimeric G proteins.


Cancer Research | 2004

A Functional Polymorphism in RGS6 Modulates the Risk of Bladder Cancer

David M. Berman; Yunfei Wang; Zhengyu Liu; Qiong Dong; Lorri Anne Burke; Lance A. Liotta; Rory A. Fisher; Xifeng Wu

RGS proteins negatively regulate heterotrimeric G protein signaling. Recent reports have shown that RGS proteins modulate neuronal, cardiovascular, and lymphocytic activity, yet their role in carcinogenesis has not been explored. In an epidemiologic study of 477 bladder cancer patients and 446 matched controls, three noncoding single-nucleotide polymorphisms (SNPs) in RGS2 and RGS6 were each associated with a statistically significant reduction in bladder cancer risk. The risk of bladder cancer was reduced by 74% in those individuals with the variant genotype at all three SNPs (odds ratio, 0.26; 95% confidence interval, 0.09–0.71). When the SNPs were analyzed separately, the RGS6-rs2074647 (C→T) polymorphism conferred the greatest overall reduction in risk of bladder cancer (odds ratio, 0.66; 95% confidence interval, 0.46–0.95). These reductions in risk were more pronounced in ever smokers, suggesting a gene-environment interaction. In transfection assays, the RGS6-rs2074647 (C→T) polymorphism increased the activity of a luciferase-RGS fusion protein by 2.9-fold, suggesting that this SNP is functionally significant. Finally, we demonstrate that RGS2 transcripts and several splice variants of RGS6 are expressed in bladder cancer cells. These data provide the first evidence that RGS proteins may be important modulators of cancer risk and validate RGS6 as a target for further study.


Cancer Research | 2011

Regulator of G Protein Signaling 6 Mediates Doxorubicin-Induced ATM and p53 Activation by a Reactive Oxygen Species–Dependent Mechanism

Jie Huang; Jianqi Yang; Biswanath Maity; Daisuke Mayuzumi; Rory A. Fisher

Doxorubicin (DXR), among the most widely used cancer chemotherapy agents, promotes cancer cell death via activation of ataxia telangiectasia mutated (ATM) and the resultant upregulation of tumor suppressor p53. The exact mechanism by which DXR activates ATM is not fully understood. Here, we discovered a novel role for regulator of G protein signaling 6 (RGS6) in mediating activation of ATM and p53 by DXR. RGS6 was robustly induced by DXR, and genetic loss of RGS6 dramatically impaired DXR-induced activation of ATM and p53, as well as its in vivo apoptotic actions in heart. The ability of RGS6 to promote p53 activation in response to DXR was independent of RGS6 interaction with G proteins but required ATM. RGS6 mediated activation of ATM and p53 by DXR via a reactive oxygen species (ROS)-dependent and DNA damage-independent mechanism. This mechanism represents the primary means by which DXR promotes activation of the ATM-p53 apoptosis pathway that underlies its cytotoxic activity. Our findings contradict the canonical theories that DXR activates ATM primarily by promoting DNA damage either directly or indirectly (via ROS) and that RGS6 function is mediated by its interactions with G proteins. These findings reveal a new mechanism for the chemotherapeutic actions of DXR and identify RGS6 as a novel target for cancer chemotherapy.

Collaboration


Dive into the Rory A. Fisher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adele Stewart

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jie Huang

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Merle S. Olson

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Isaac Samuel

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D J Hanahan

University of Texas System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge