Rory Danielle Cottrell
University of Rochester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rory Danielle Cottrell.
Earth and Planetary Science Letters | 1997
John A. Tarduno; Rory Danielle Cottrell
The bend in the Hawaiian-Emperor chain is the best example of a change in plate motion recorded in a fixed-hotspot frame of reference. Alternatively, the bend might record primarily differences in motion of the Hawaiian hotspot relative to the Pacific lithosphere. New paleomagnetic data from the Emperor chain support the latter view. Althouth the rate of motion is difficult to constrain because of uncertainties posed by true polar wander and limited sampling of the chain, the best available paleomagnetic data suggest Pacific hotspots may have moved at rates comparable to those of lithospheric plates (> 30 mm yr−1) in late Cretaceous to early Tertiary times (81-43 Ma). If correct, this requires a major change in how we view mantle dynamics and the history of plate motions. In the early to mid-Cretaceous (128-95 Ma), hotspots in the Atlantic moved at similar rates. These episodes during which groups of hotspots appear to move rapidly are separated by times of much slower motion, such as the past 5 m.y.
Science | 2010
John A. Tarduno; Rory Danielle Cottrell; Axel Hofmann; Pavel V. Doubrovine; Eric E. Mamajek; Dunji Liu; David G. Sibeck; Levi P. Neukirch; Yoichi Usui
Early Origin of Earths Magnetic Field Earths magnetic field protects us from stellar winds and radiation from the Sun. Understanding when, during the Earths formation, the large-scale magnetic field was established is important because it impacts understanding of the young Earths atmosphere and exosphere. By analyzing ancient silicate crystals, Tarduno et al. (p. 1238; see the Perspective by Jardine) demonstrate that the Earths magnetic field existed 3.4 to 3.45 billion years ago, pushing back the oldest record of geomagnetic field strength by 200 million years. This result combined with estimates of the conditions within the solar wind at that time implies that the size of the paleomagnetosphere was about half of that typical today, but with an auroral oval of about three times the area. The smaller magnetosphere and larger auroral oval would have promoted loss of volatiles and water from the early atmosphere. Analysis of ancient silicate crystals indicates that Earth’s magnetic field existed 3.40 to 3.45 billion years ago. Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth’s magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is ~50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of ≤5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition.
Proceedings of the National Academy of Sciences of the United States of America | 2002
John A. Tarduno; Rory Danielle Cottrell; Alexei V. Smirnov
If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earths magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitudes near the tangent cylinder that surrounds the solid inner core. The time-averaged field recorded by these lavas is remarkably strong and stable. When combined with global results available from lower latitudes, these data define a time-averaged field that is overwhelmingly dominated by the axial dipole (octupole components are insignificant). These observations suggest that the basic features of the geomagnetic field are intrinsically related. Superchrons may reflect times when the nature of core–mantle boundary heat flux allows the geodynamo to operate at peak efficiency.
Nature | 2007
John A. Tarduno; Rory Danielle Cottrell; Dorothy Bauch
The strength of the Earth’s early geomagnetic field is of importance for understanding the evolution of the Earth’s deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth’s atmosphere from solar wind erosion.
Science | 2015
John A. Tarduno; Rory Danielle Cottrell; William J. Davis; Francis Nimmo; Richard K. Bono
Unlocking Earths ancient magnetic past The magnetic field protects Earths surface from deadly cosmic radiation and provides clues about the planets interior. Tarduno et al. found that some of the oldest minerals on Earth, Jack Hills zircons, preserved a record of a magnetic field over 4 billion years ago (see the Perspective by Aubert). Earths magnetic field appears to have been fully operational a mere few hundred million years after the planet formed. This suggests an early start for plate tectonics and an ancient cosmic radiation shield that was important for habitability Science, this issue p. 521; see also p. Paleomagnetic measurements on Jack Hills zircons suggest that the magnetic field may be at least 4.2 billion years old. [Also see Perspective by Aubert] Knowing when the geodynamo started is important for understanding the evolution of the core, the atmosphere, and life on Earth. We report full-vector paleointensity measurements of Archean to Hadean zircons bearing magnetic inclusions from the Jack Hills conglomerate (Western Australia) to reconstruct the early geodynamo history. Data from zircons between 3.3 billion and 4.2 billion years old record magnetic fields varying between 1.0 and 0.12 times recent equatorial field strengths. A Hadean geomagnetic field requires a core-mantle heat flow exceeding the adiabatic value and is suggestive of plate tectonics and/or advective magmatic heat transport. The existence of a terrestrial magnetic field before the Late Heavy Bombardment is supported by terrestrial nitrogen isotopic evidence and implies that early atmospheric evolution on both Earth and Mars was regulated by dynamo behavior.
Earth and Planetary Science Letters | 1999
Rory Danielle Cottrell; John A. Tarduno
We suggest a new approach for the determination of absolute geomagnetic paleointensity that uses single plagioclase crystals to avoid problems caused by alteration during Thellier–Thellier analyses. Transmission electron microscope imaging and rock magnetic data indicate that plagioclase crystals from a recent basalt flow in Hawaii (1955 Kilauea eruption) contain pseudo-single to single domain titanomagnetite inclusions. These feldspars yield paleointensity values that agree within error with magnetic observatory data and paleointensity values reported from whole rock samples. These results suggest that single plagioclase crystals from older igneous rocks may provide a viable source of paleointensity data.
Geochemistry Geophysics Geosystems | 2012
Levi P. Neukirch; John A. Tarduno; Rory Danielle Cottrell; Thomas N. Huffman
Studies of the recent history of Earths magnetic field have revealed a rich spatial and temporal structure, but face limitations by a lack of Southern Hemisphere archeomagnetic data. Studies of Iron Age (200-1850 AD) peoples of southern Africa have revealed a potentially rich source of archeomagnetic information in the form of ceramics (specifically pottery). Additionally, contemporary pottery made with traditional techniques and materials can still be found. Reported here is the first step in addressing whether ancient pottery from southern Africa might faithfully record the geomagnetic field. We analyze contemporary pottery made with traditional techniques and methods. Rock magnetic measurements, including magnetic susceptibility as a function of temperature and magnetic hysteresis behavior, are discussed. Intensity results generated by three common paleointensity methods: Thellier- Coe double heating experiments, the multi-specimen method of Dekkers and Bohnel, and Shaws method (with and without the corrections of Kono) are compared to the known field at the time of firing. The Thellier-Coe method reproduces the field (with an accuracy of 1.3 μT), the Shaw technique with the correction approach of Kono overestimates the field by 3.7%. The multispecimen method overestimates the field by 20%, however improvement upon this could be expected given recent improvements to the technique. These values bound the accuracies we can expect when applying the methods to ideal samples, representing a best-case for dealing with archeological ceramics from southern Africa
Science | 2012
John A. Tarduno; Rory Danielle Cottrell; Francis Nimmo; Julianna Hopkins; Julia Voronov; Austen Erickson; Eric G. Blackman; Edward R. D. Scott; Robert McKinley
Magnetic Pallasites The origin of pallasite meteorites seems to defy explanation because their main constituents—iron and olivine—should have segregated into layers inside their parent body. The generally accepted model suggests that they formed at the coremantle boundary of an asteroid. Tarduno et al. (p. 939; see the Perspective by Weiss) measured a remnant magnetization in olivine crystals of two pallasite meteorites and conclude that a dynamo must have operated in their parent body, providing further evidence that some asteroids were capable of dynamo generation. The data, together with thermal modeling, suggest that some pallasites could have formed when liquid FeNi from the core of an impacting asteroid was injected into the mantle of a large protoplanet. Some pallasite meteorites might have formed when liquid FeNi from an impactor was injected into their parent body’s mantle. Understanding the origin of pallasites, stony-iron meteorites made mainly of olivine crystals and FeNi metal, has been a vexing problem since their discovery. Here, we show that pallasite olivines host minute magnetic inclusions that have favorable magnetic recording properties. Our paleointensity measurements indicate strong paleomagnetic fields, suggesting dynamo action in the pallasite parent body. We use these data and thermal modeling to suggest that some pallasites formed when liquid FeNi from the core of an impactor was injected as dikes into the shallow mantle of a ~200-kilometer-radius protoplanet. The protoplanet remained intact for at least several tens of millions of years after the olivine-metal mixing event.
Tectonophysics | 2003
Rory Danielle Cottrell; John A. Tarduno
Abstract We present a Late Cretaceous (81 Ma) pole position for the Pacific plate derived from paleomagnetic analyses of basalt samples from Detroit Seamount (of the Hawaiian–Emperor seamounts) that were oriented using Brunhes-age overprints. This pole is at much higher latitudes than the previously published Late Cretaceous pole positions based on the modeling of magnetic anomalies observed during marine surveys over seamounts. Our new pole suggests that the Pacific plate would have moved rapidly between 95 and 81 Ma at speeds as high as 19.8 (−10.8/+11.2) cm/year. The Pacific plate at this time was smaller than the present-day plate and had a substantial subducting boundary. The high-velocity estimates are comparable with those of other paleoplates having similar characteristics. Therefore, plate tectonic driving forces can explain the motion and there is no need to invoke true polar wander. Decreases in mantle drag associated with vigorous Late Cretaceous volcanism in the Pacific, however, may have contributed to the rapid plate speed. The new pole position, together with other reliable paleomagnetic indicators of Pacific apparent polar wander, further supports the notion of drift of the Hawaiian hotspot during the Late Cretaceous.
Nature Communications | 2015
John A. Tarduno; Thomas N. Huffman; Rory Danielle Cottrell; Eric G. Blackman; A. Wendt; Cecilia A. Scribner; Courtney L. Wagner
The dramatic decay of dipole geomagnetic field intensity during the last 160 years coincides with changes in Southern Hemisphere (SH) field morphology and has motivated speculation of an impending reversal. Understanding these changes, however, has been limited by the lack of longer-term SH observations. Here we report the first archaeomagnetic curve from southern Africa (ca. 1000–1600 AD). Directions change relatively rapidly at ca. 1300 AD, whereas intensities drop sharply, at a rate greater than modern field changes in southern Africa, and to lower values. We propose that the recurrence of low field strengths reflects core flux expulsion promoted by the unusual core–mantle boundary (CMB) composition and structure beneath southern Africa defined by the African large low shear velocity province (LLSVP). Because the African LLSVP and CMB structure are ancient, this region may have been a steady site for flux expulsion, and triggering of geomagnetic reversals, for millions of years.