Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa A. Maldonado is active.

Publication


Featured researches published by Rosa A. Maldonado.


Journal of Medicinal Chemistry | 2012

Searching for New Chemotherapies for Tropical Diseases: Ruthenium-Clotrimazole Complexes Display High in vitro Activity Against Leishmania major and Trypanosoma cruzi and Low Toxicity Toward Normal Mammalian Cells

Alberto Martínez; Teresia Carreon; Eva Iniguez; Atilio Anzellotti; Antonio Sánchez; Marina Tyan; Aaron Sattler; Linda J. Herrera; Rosa A. Maldonado; Roberto A. Sánchez-Delgado

Eight new ruthenium complexes of clotrimazole (CTZ) with high antiparasitic activity have been synthesized, cis,fac-[Ru(II)Cl(2)(DMSO)(3)(CTZ)] (1), cis,cis,trans-[Ru(II)Cl(2)(DMSO)(2)(CTZ)(2)] (2), Na[Ru(III)Cl(4)(DMSO)(CTZ)] (3), Na[trans-Ru(III)Cl(4)(CTZ)(2)] (4), [Ru(II)(η(6)-p-cymene)Cl(2)(CTZ)] (5), [Ru(II)(η(6)-p-cymene)(bipy)(CTZ)][BF(4)](2) (6), [Ru(II)(η(6)-p-cymene)(en)(CTZ)][BF(4)](2) (7), and [Ru(II)(η(6)-p-cymene)(acac)(CTZ)][BF(4)] (8) (bipy = bipyridine; en = ethlylenediamine; acac = acetylacetonate). The crystal structures of compounds 4-8 are described. Complexes 1-8 are active against promastigotes of Leishmania major and epimastigotes of Trypanosoma cruzi. Most notably, complex 5 increases the activity of CTZ by factors of 110 and 58 against L. major and T. cruzi, with no appreciable toxicity to human osteoblasts, resulting in nanomolar and low micromolar lethal doses and therapeutic indexes of 500 and 75, respectively. In a high-content imaging assay on L. major-infected intraperitoneal mice macrophages, complex 5 showed significant inhibition on the proliferation of intracellular amastigotes (IC(70) = 29 nM), while complex 8 displayed some effect at a higher concentration (IC(40) = 1 μM).


Journal of Biological Inorganic Chemistry | 2013

Metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells.

Eva Iniguez; Antonio Sánchez; Miguel A. Vasquez; Alberto Martínez; Joanna Olivas; Aaron Sattler; Roberto A. Sánchez-Delgado; Rosa A. Maldonado

In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium–ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes—cis,fac-[RuIICl2(DMSO)3(KTZ)] (1) and cis-[RuIICl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2′-bipyridine)—and four organometallic compounds—[RuII(η6-p-cymene)Cl2(KTZ)] (3), [RuII(η6-p-cymene)(en)(KTZ)][BF4]2 (4), [RuII(η6-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [RuII(η6-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with RuII in compounds 3–5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3–5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.


Developmental and Comparative Immunology | 2009

Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis

Eliane Esteves; Andréa C. Fogaça; Rosa A. Maldonado; F.D. Silva; P.P.A. Manso; M. Pelajo-Machado; D. Valle; Sirlei Daffre

Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of R. (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data, suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens.


Vaccine | 2014

A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease.

Carylinda Serna; Joshua A. Lara; Silas P. Rodrigues; Alexandre F. Marques; Igor C. Almeida; Rosa A. Maldonado

Chagas disease, caused by Trypanosoma cruzi, is responsible for producing significant morbidity and mortality throughout Latin America. The disease has recently become a public health concern to nonendemic regions like the U.S. and Europe. Currently there are no fully effective drugs or vaccine available to treat the disease. The mucin-associated surface proteins (MASPs) are glycosylphosphatidylinositol (GPI)-anchored glycoproteins encoded by a multigene family with hundreds of members. MASPs are among the most abundant antigens found on the surface of the infective trypomastigote stage of T. cruzi, thus representing an attractive target for vaccine development. Here we used immunoinformatics to select a 20-mer peptide with several predicted overlapping B-cell, MHC-I, and MHC-II epitopes, from a MASP family member expressed on mammal-dwelling stages of T. cruzi. The synthetic MASP peptide conjugated to keyhole limpet hemocyanin (MASPpep-KLH) was tested in presence or not of an adjuvant (alum, Al) as a vaccine candidate in the C3H/HeNsd murine model of T. cruzi infection. In considerable contrast to the control groups receiving placebo, Al, or KLH alone or the group immunized with MASPpep-KLH/Al, the group immunized with MASPpep-KLH showed 86% survival rate after challenge with a highly lethal dose of trypomastigotes. As evaluated by quantitative real-time polymerase chain reaction, MASPpep-KLH-immunized animals had much lower parasite load in the heart, liver, and spleen than control animals. Moreover, protected animals produced trypanolytic, protective antibodies, and a cytokine profile conducive to resistance against parasite infection. Finally, in vivo depletion of either CD4(+) or CD8(+) T cells indicated that the latter are critical for protection in mice immunized with MASPpep-KLH. In summary, this new peptide-based vaccine with overlapping B- and T-cell epitopes is able to control T. cruzi infection in mice by priming both humoral and cellular immunity.


Infection and Immunity | 2008

Novel Role of Sphingolipid Synthesis Genes in Regulating Giardial Encystation

Yunuen Hernandez; Max Shpak; Trevor T. Duarte; Tavis L. Mendez; Rosa A. Maldonado; Sukla Roychowdhury; Marcio L. Rodrigues; Siddhartha Das

ABSTRACT Although encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites. While the putative homologues of giardial serine palmitoyltransferase (gSPT) subunit genes (gspt-1 and -2) are differentially expressed in nonencysting and encysting trophozoites, the giardial ceramide glucosyltransferase 1 gene (gglct-1) is transcribed only in encysting cells. l-Cycloserine, an inhibitor of gSPT, inhibited the endocytosis and endoplasmic reticulum/perinuclear targeting of bodipy-ceramide in trophozoites, and this could be reversed by 3-ketosphinganine. On the other hand, d-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthesis, blocked karyokinesis and reduced cyst production in culture. PPMP also altered the expression of cyst wall protein transcripts in encysting cells. Phylogenetic analyses revealed that the gspt genes are paralogs derived from an ancestral spt sequence that underwent gene duplication early in eukaryotic history. This ancestral sequence, in turn, was probably derived from prokaryotic aminoacyl transferases. In contrast, gglct-1 is found in both prokaryotes and eukaryotes without any evidence of gene duplication. These studies indicate that SL synthesis genes are involved in key events in giardial biology and could serve as potential targets for developing new therapies against giardiasis.


Journal of Parasitology | 2006

Trypanosoma cruzi oleate desaturase: Molecular characterization and comparative analysis in other trypanosomatids

Rosa A. Maldonado; Renata K. Kuniyoshi; Jutta G. Linss; Igor C. Almeida

Trypanosoma cruzi lipids contain a high content of unsaturated fatty acids, primarily oleic acid (C18:1) and linoleic acid (C18:2). Previous data suggest that this parasite is able to convert oleic acid into linoleic acid; humans are not able to do this. Presently, we show that T. cruzi has a gene with high similarity to the Δ12 (ω6)-oleate desaturase from plants. Northern blot analysis of the oleate desaturase gene from T. cruzi (ODTc) indicated that this gene is transcribed in epimastigote, amastigote, and trypomastigote forms. Pulsed-field analysis showed that ODTc is located at distinct chromosomal bands on distinct T. cruzi phylogenetic groups. In addition, the chromoblot analysis demonstrated the presence of homologous ODTc genes in several trypanosomatids; namely, Crithidia fasciculata, Herpetomonas megaseliae, Leptomonas seymouri, Trypanosoma freitasi, Trypanosoma rangeli, Trypanosoma lewisi, Blastocrithidia sp., Leishmania amazonensis, Endotrypanum schaudinni, and Trypanosoma conorhini. The native ODTc activity was detected by metabolic labeling and analysis of total fatty acids from epimastigotes and trypomastigotes of T. cruzi, coanomastigotes of C. fasciculata, and promastigotes of L. amazonensis, H. megaseliae, and L. seymouri. The fact that the enzyme oleate desaturase is not present in humans makes it an ideal molecular target for the development of new chemotherapeutic approaches against Chagas disease.


Memorias Do Instituto Oswaldo Cruz | 2005

Detection of Brazilian spotted fever infection by polymerase chain reaction in a patient from the state of São Paulo

Elvira Maria Mendes do Nascimento; Flávia de Sousa Gehrke; Rosa A. Maldonado; Silvia Colombo; Luiz Jacintho da Silva; Teresinha Tizu Sato Schumaker

Brazilian spotted fever (BSF) cases have been increasing in the state of São Paulo but no genomic information about local rickettsia isolated from humans has been well documented. We recovered spotted-fever group rickettsiae from a sample of patient blood cultured in Vero cells using the shell vial technique. Rickettsial DNA fragments (gltA, ompA, and, ompB genes) were detected, and analysis of the ompB gene base sequences showed identity with the Rickettsia rickettsii ompB sequence available in the GenBank.


Molecular and Biochemical Parasitology | 1999

Identification of calcium binding sites in the trypanosome flagellar calcium-acyl switch protein

Rosa A. Maldonado; Salida Mirzoeva; Lisa M. Godsel; Thomas J. Lukas; Samuel Goldenberg; D. Martin Watterson; David M. Engman

The 24 kDa flagellar calcium binding protein (FCaBP) of the protozoan Trypanosoma cruzi is a calcium-acyl switch protein. FCaBP is modified by the addition of myristate and palmitate at its amino terminal segment and both modifications are required for calcium-modulated flagellar membrane association. FCaBP has four sequence motifs for potential calcium binding, and comparison to other calcium-acyl switch proteins, such as recoverin, suggested that only two of these sites are functional. Because it is not possible to predict with certainty the calcium binding affinity or selectivity based on motif analysis alone, we determined the quantitative calcium binding activity of FCaBP by direct ligand binding using the flow dialysis method. The results demonstrated the presence of two calcium binding sites in the full length FCaBP and in a mutant (FCaBPdelta12) lacking the amino terminal pair of sites. FCaBPdelta12 retains its ability to localize to the flagellum. A mutant FCaBP lacking the two carboxyl-terminal sites (FCaBPdelta34), did not bind calcium with high affinity and selectivity under the conditions used. The calcium binding properties of FCaBP are therefore distinct from other myristoyl switch proteins such as recoverin. The results add to a growing body of knowledge about the correlation of sequence motifs with calcium binding activity. Moreover, they demonstrate the need to determine the apparently novel mechanism by which FCaBP undergoes calcium modulated flagellar membrane association and its relation to calcium signal transduction.


Journal of Parasitology | 2009

2,3-Diphenyl-1,4-Naphthoquinone: A Potential Chemotherapeutic Agent Against Trypanosoma cruzi

Enrique I. Ramos; Kristine M. Garza; R. L. Krauth-Siegel; Julia O. Bader; Luiz E. Martinez; Rosa A. Maldonado

Abstract Chagas disease, caused by Trypanosoma cruzi, is a widespread infection in Latin America. Currently, only 2 partially effective and highly toxic drugs, i.e., benznidazole and nifurtimox, are available for the treatment of this disease, and several efforts are underway in the search for better chemotherapeutic agents. Here, we have determined the trypanocidal activity of 2,3-diphenyl-1,4-naphthoquinone (DPNQ), a novel quinone derivative. In vitro, DPNQ was highly cytotoxic at a low, micromolar concentration (LD50 = 2.5 μM) against epimastigote, cell-derived trypomastigote, and intracellular amastigote forms of T. cruzi, but not against mammalian cells (LD50 = 130 μM). In vivo studies on the murine model of Chagas disease revealed that DPNQ-treated animals (3 doses of 10 mg/kg/day) showed a significant delay in parasitemia peak and higher (up to 60%) survival rate 70 days post-infection, when compared with the control group (infected, untreated). We also observed a 2-fold decrease in parasitemia between the control group (infected, untreated) and the treated group (infected, treated). No apparent drug toxicity effects were noticed in the control group (uninfected, treated). In addition, we determined that DPNQ is the first competitive inhibitor of T. cruzi lipoamide dehydrogenase (TcLipDH) thus far described. Our results indicate that DPNQ is a promising chemotherapeutic agent against T. cruzi.


Journal of Parasitology | 2010

Anti-Trypanosomatid Activity of Ceragenins

Diana Lara; Yanshu Feng; Julia O. Bader; Paul B. Savage; Rosa A. Maldonado

Abstract Cationic steroid antibiotics (CSAs), or ceragenins, are amphiphilic compounds consisting of a cholic acid backbone that is attached to several cationic amines. In this study, we tested the hypothesis that CSAs possess antiparasitic activities with minimal to no effects on mammalian cells, and thus could be used as potential therapeutic agents against pathogenic trypanosomatids. To investigate this notion, we synthesized CSAs and determined their trypanocidal and leishmanicidal activities in vitro. The 3 ceragenins assayed, i.e., CSA-8, CSA-13, and CSA-54, showed several degrees of parasiticidal activity. CSA-13 was the most effective compound against Leishmania major promastigotes and Trypanosoma cruzi trypomastigotes, at LD50 4.9 and 9 µM, respectively. The trypanocidal activities of these ceragenins were also assessed by infectivity experiments. We found CSA-8 was more effective on T. cruzi intracellular amastigotes when the infected host cells were treated for 24 hr (LD50, 6.7 µM). Macrophages and LLC-MK2 (treated for 72 hr) showed relative low susceptibility to these compounds. Our results suggest that ceragenins are indeed promising chemotherapeutic agents against trypanosomatids, but they require further investigation.

Collaboration


Dive into the Rosa A. Maldonado's collaboration.

Top Co-Authors

Avatar

Eva Iniguez

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Igor C. Almeida

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Alberto Martínez

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Armando Varela-Ramirez

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Linda J. Herrera

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Sánchez

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Caresse L. Torres

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Carolina Lema

University of Texas at El Paso

View shared research outputs
Researchain Logo
Decentralizing Knowledge