Rosa Cossart
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa Cossart.
Trends in Neurosciences | 2000
Yehezkel Ben-Ari; Rosa Cossart
Studies using kainate, an excitatory amino acid extracted from a seaweed, have provided major contributions to the understanding of epileptogenesis. Here we review pioneering and more recent studies aimed at determining how kainate generates seizures and, in particular, how inhibition is altered during seizures. We focus on target and subunit-specific effects of kainate on hippocampal pyramidal neurons and interneurons that lead to an excitation of both types of neurons and thus to the parallel increase of glutamatergic and GABAergic spontaneous currents. We propose that kainate excites all its targets, the net consequence depending on the level of activity of the network.
Nature | 2003
Rosa Cossart; Dmitriy Aronov; Rafael Yuste
The cerebral cortex receives input from lower brain regions, and its function is traditionally considered to be processing that input through successive stages to reach an appropriate output. However, the cortical circuit contains many interconnections, including those feeding back from higher centres, and is continuously active even in the absence of sensory inputs. Such spontaneous firing has a structure that reflects the coordinated activity of specific groups of neurons. Moreover, the membrane potential of cortical neurons fluctuates spontaneously between a resting (DOWN) and a depolarized (UP) state, which may also be coordinated. The elevated firing rate in the UP state follows sensory stimulation and provides a substrate for persistent activity, a network state that might mediate working memory. Using two-photon calcium imaging, we reconstructed the dynamics of spontaneous activity of up to 1,400 neurons in slices of mouse visual cortex. Here we report the occurrence of synchronized UP state transitions (‘cortical flashes’) that occur in spatially organized ensembles involving small numbers of neurons. Because of their stereotyped spatiotemporal dynamics, we conclude that network UP states are circuit attractors—emergent features of feedback neural networks that could implement memory states or solutions to computational problems.
Nature Neuroscience | 2001
Rosa Cossart; Céline Dinocourt; June C. Hirsch; A. Merchan-Perez; J. De Felipe; Yehezkel Ben-Ari; Monique Esclapez; Christophe Bernard
Impaired inhibition is thought to be important in temporal lobe epilepsy (TLE), the most common form of epilepsy in adult patients. We report that, in experimental TLE, spontaneous GABAergic inhibition was increased in the soma but reduced in the dendrites of pyramidal neurons. The former resulted from the hyperactivity of somatic projecting interneurons, whereas the latter was probably due to the degeneration of a subpopulation of dendritic projecting interneurons. A deficit in dendritic inhibition could reduce seizure threshold, whereas enhanced somatic inhibition would prevent the continuous occurrence of epileptiform activity.
Science | 2009
Paolo Bonifazi; Miri Goldin; Michel A. Picardo; Isabel Jorquera; Adriano Cattani; Gregory Bianconi; Alfonso Represa; Yehezkel Ben-Ari; Rosa Cossart
Coordinating Neuronal Assemblies Theoretical models predict the existence of so-called hub neurons—highly connected cells that strongly influence the synchronization of spiking activity in a large group of neurons. However, experimental evidence for the existence of these neuronal hubs is lacking. Bonifazi et al. (p. 1419) used high-resolution, two-photon calcium imaging to measure spontaneous calcium fluctuations in hundreds of neurons simultaneously and determined the relative timing of these fluctuations. Examination of functional connectivity maps, based on temporal correlation measurements, revealed a subpopulation of GABAergic hub neurons displaying a remarkably widespread axonal arborization that orchestrated network synchrony in developing hippocampal networks. Spontaneous network synchronizations in developing hippocampus caused giant depolarizing potentials in individual neurons, and manipulating the spike activity in potential hub cells influenced network activity. A model for the topology of brain networks incorporates a morpho-functional description of neuronal hubs. Brain function operates through the coordinated activation of neuronal assemblies. Graph theory predicts that scale-free topologies, which include “hubs” (superconnected nodes), are an effective design to orchestrate synchronization. Whether hubs are present in neuronal assemblies and coordinate network activity remains unknown. Using network dynamics imaging, online reconstruction of functional connectivity, and targeted whole-cell recordings in rats and mice, we found that developing hippocampal networks follow a scale-free topology, and we demonstrated the existence of functional hubs. Perturbation of a single hub influenced the entire network dynamics. Morphophysiological analysis revealed that hub cells are a subpopulation of γ-aminobutyric acid–releasing (GABAergic) interneurons possessing widespread axonal arborizations. These findings establish a central role for GABAergic interneurons in shaping developing networks and help provide a conceptual framework for studying neuronal synchrony.
Science | 2006
Roman Tyzio; Rosa Cossart; Ilgam Khalilov; Marat Minlebaev; Christian A. Hübner; Alfonso Represa; Yehezkel Ben-Ari
We report a signaling mechanism in rats between mother and fetus aimed at preparing fetal neurons for delivery. In immature neurons, γ-aminobutyric acid (GABA) is the primary excitatory neurotransmitter. We found that, shortly before delivery, there is a transient reduction in the intracellular chloride concentration and an excitatory-to-inhibitory switch of GABA actions. These events were triggered by oxytocin, an essential maternal hormone for labor. In vivo administration of an oxytocin receptor antagonist before delivery prevented the switch of GABA actions in fetal neurons and aggravated the severity of anoxic episodes. Thus, maternal oxytocin inhibits fetal neurons and increases their resistance to insults during delivery.
Nature Neuroscience | 1998
Rosa Cossart; Monique Esclapez; June C. Hirsch; Christophe Bernard; Yehezkel Ben-Ari
We studied the modulation of GABAergic inhibition by glutamate and kainate acting on GluR5-containing kainate receptors in the CA1 hippocampal region. Glutamate, kainate or ATPA, a selective agonist of GluR5-containing receptors, generates an inward current in inhibitory interneurons and cause repetitive action potential firing. This results in a massive increase of tonic GABAergic inhibition in the somata and apical dendrites of pyramidal neurons. These effects are prevented by the GluR5 antagonist LY 293558. Electrical stimulation of excitatory afferents generates kainate receptor-mediated excitatory postsynaptic currents (EPSCs) and action potentials in identified interneurons that project to the dendrites and somata of pyramidal neurons. Therefore glutamate acting on kainate receptors containing the GluR5 subunit may provide a protective mechanism against hyperexcitability.
The Journal of Neuroscience | 2008
Camille Allene; Adriano Cattani; James B. Ackman; Paolo Bonifazi; Laurent Aniksztejn; Yehezkel Ben-Ari; Rosa Cossart
Developing cortical networks generate a variety of coherent activity patterns that participate in circuit refinement. Early network oscillations (ENOs) are the dominant network pattern in the rodent neocortex for a short period after birth. These large-scale calcium waves were shown to be largely driven by glutamatergic synapses albeit GABA is a major excitatory neurotransmitter in the cortex at such early stages, mediating synapse-driven giant depolarizing potentials (GDPs) in the hippocampus. Using functional multineuron calcium imaging together with single-cell and field potential recordings to clarify distinct network dynamics in rat cortical slices, we now report that the developing somatosensory cortex generates first ENOs then GDPs, both patterns coexisting for a restricted time period. These patterns markedly differ by their developmental profile, dynamics, and mechanisms: ENOs are generated before cortical GDPs (cGDPs) by the activation of glutamatergic synapses mostly through NMDARs; cENOs are low-frequency oscillations (∼0.01 Hz) displaying slow kinetics and gradually involving the entire network. At the end of the first postnatal week, GABA-driven cortical GDPs can be reliably monitored; cGDPs are recurrent oscillations (∼0.1 Hz) that repetitively synchronize localized neuronal assemblies. Contrary to cGDPs, cENOs were unexpectedly facilitated by short anoxic conditions suggesting a contribution of glutamate accumulation to their generation. In keeping with this, alterations of extracellular glutamate levels significantly affected cENOs, which are blocked by an enzymatic glutamate scavenger. Moreover, we show that a tonic glutamate current contributes to the neuronal membrane excitability when cENOs dominate network patterns. Therefore, cENOs and cGDPs are two separate aspects of neocortical network maturation that may be differentially engaged in physiological and pathological processes.
Neuron | 2001
Rosa Cossart; Roman Tyzio; Céline Dinocourt; Monique Esclapez; June C. Hirsch; Y. Ben-Ari; Christophe Bernard
We report that kainate receptors are present on presynaptic GABAergic terminals contacting interneurons and that their activation increases GABA release. Application of kainate increased the frequency of miniature inhibitory postsynaptic currents recorded in CA1 interneurons. Local applications of glutamate but not of AMPA or NMDA also increased GABA quantal release. Application of kainate as well as synaptically released glutamate reduced the number of failures of GABAergic neurotransmission between interneurons. Thus, activation of presynaptic kainate receptors increases the probability of GABA release at interneuron-interneuron synapses. Glutamate may selectively control the communication between interneurons by increasing their mutual inhibition.
Neuron | 2007
Valérie Crépel; Dmitriy Aronov; Isabel Jorquera; Alfonso Represa; Yehezkel Ben-Ari; Rosa Cossart
Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.
Neuron | 2002
Rosa Cossart; Jérôme Epsztein; Roman Tyzio; Hélène Becq; June C. Hirsch; Yehezkel Ben-Ari; Valérie Crépel
The relative contribution of kainate receptors to ongoing glutamatergic activity is at present unknown. We report the presence of spontaneous, miniature, and minimal stimulation-evoked excitatory postsynaptic currents (EPSCs) that are mediated solely by kainate receptors (EPSC(kainate)) or by both AMPA and kainate receptors (EPSC(AMPA/kainate)). EPSC(kainate) and EPSC(AMPA/kainate) are selectively enriched in CA1 interneurons and mossy fibers synapses of CA3 pyramidal neurons, respectively. In CA1 interneurons, the decay time constant of EPSC(kainate) (circa 10 ms) is comparable to values obtained in heterologous expression systems. In both hippocampal neurons, the quantal release of glutamate generates kainate receptor-mediated EPSCs that provide as much as half of the total glutamatergic current. Kainate receptors are, therefore, key players of the ongoing glutamatergic transmission in the hippocampus.