Rosa de Llanos
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa de Llanos.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2006
Rosa de Llanos; M. Teresa Fernández-Espinar; Amparo Querol
Saccharomyces cerevisiae is the most widely used yeast in industrial/commercial food and beverage production and is even consumed as a nutritional supplement. Various cases of fungemia caused by this yeast species in severely debilitated traumatized or immune-deficient patients have been reported in recent years, suggesting that this species could be an opportunistic pathogen in such patients. To determine whether the industrial S. cerevisiae strains can be included in this virulent group of strains, we carried out a comparative study between clinical and industrial yeasts based on the various phenotypic traits associated with pathogenicity in two other yeast species (Candida albicans and Cryptococcus neoformans). The majority of the clinical isolates were found to secrete higher levels of protease and phospholipase, grow better at 42°C and show strong pseudohyphal growth relative to industrial yeasts. However three industrial yeast strains, one commercial wine strain, baker’s yeast and one commercial strain of S. cerevisiae (var. boulardii), were exceptions and based on their physiological traits these yeasts would appear to be related to clinical strains.
Systematic and Applied Microbiology | 2004
Rosa de Llanos; Amparo Querol; Anna M. Planes; M. Teresa Fernández-Espinar
We assessed the molecular characterization of 96 clinical isolates of S. cerevisiae from a Spanish medical institution and we compared them with 6 non-clinical strains isolated from wine, beer and bread and 1 S. boulardii strain collected from a commercial preparation. The strains were subjected to HinfI mtDNA restriction analysis and PCR amplification of delta sequences. Although both techniques are appropriate for routine clinical analysis, that based on PCR turned out to be the most discriminating. This study, apart from providing tools for clinical application, deals with the relationships between clinical and non-clinical strains. The two bakers yeasts analysed shared mtDNA and PCR patterns with a group of 31 clinical isolates. An exogenous entry of a strain was also reflected in the case of 19 clinical isolates and the therapeutic strain S. boulardii. Both bakers yeasts and S. boulardii were identified respectively among 32.3% and 19.8% of the clinical isolates and there seemed to be a connection between their ability to colonize humans and their ability to cause vaginal infection. The rest of food isolates were not grouped with clinical strains.
Molecular and Cellular Biology | 2014
Nerea Sanvisens; Antonia María Romero; Caiguo Zhang; Rosa de Llanos; María Teresa Martínez-Pastor; M. Carmen Bañó; Mingxia Huang; Sergi Puig
ABSTRACT Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.
International Journal of Molecular Sciences | 2013
María Teresa Martínez-Pastor; Rosa de Llanos; Antonia María Romero; Sergi Puig
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.
Yeast | 2010
Rosa de Llanos; Carolina Hernández-Haro; Eladio Barrio; Amparo Querol; María Teresa Fernández-Espinar; María Molina
The concept of Saccharomyces cerevisiae as an emerging opportunistic pathogen is relatively new and it is due to an increasing number of human infections during the past 20 years. There are still few studies addressing the mechanisms of infection of this yeast species. Moreover, little is known about how S. cerevisiae cells sense and respond to the harsh conditions imposed by the host, and whether this response is different between clinical isolates and non‐pathogenic strains. In this regard, mitogen‐activated protein kinase (MAPK) pathways constitute one of the major mechanisms for controlling transcriptional responses and, in some cases, virulence in fungi. Here we show differences among clinical and non‐clinical isolates of S. cerevisiae in the level of activation of the MAPKs Kss1, which controls pseudohyphal and invasive growth, and Slt2, which is required for maintaining the integrity of the cell wall under stress conditions and in the absence of stimulating conditions. Moreover, we report for the first time the existence of length variability in SLT2 alleles of strains with a clinical origin. This is due to the expansion in the number of glutamine‐encoding triplets in the microsatellite region coding for the polyglutamine (poly‐Q) tract of this gene, which range from 12 to more than 38 repetitions. We suggest that this variability may influence biological features of the Slt2 protein, allowing it to adapt swiftly in order to survive in unusual environments. Copyright
Marine Drugs | 2017
Óscar Monroig; Rosa de Llanos; Inmaculada Varó; Francisco Hontoria; Douglas R. Tocher; Sergi Puig; Juan Carlos Navarro
Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs.
Applied and Environmental Microbiology | 2016
Carlos Andrés Martínez-Garay; Rosa de Llanos; Antonia María Romero; María Teresa Martínez-Pastor; Sergi Puig
ABSTRACT Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Bakers yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels.
Applied and Environmental Microbiology | 2016
Rosa de Llanos; Carlos Andrés Martínez-Garay; Josep Fita-Torró; Antonia María Romero; María Teresa Martínez-Pastor; Sergi Puig
ABSTRACT Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced bakers yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
International Journal of Food Microbiology | 2006
Rosa de Llanos; Amparo Querol; Javier Pemán; Miguel Gobernado; María Teresa Fernández-Espinar
Annals of Microbiology | 2013
Patricia Roig; Rosa de Llanos; José Vicente Pascual Gil; M. Teresa Fernández-Espinar