Rosa Elena Cárdenas-Guerra
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa Elena Cárdenas-Guerra.
Microbes and Infection | 2012
Elisa E. Figueroa-Angulo; Francisco Javier Rendón-Gandarilla; Jonathan Puente-Rivera; Jaeson Santos Calla-Choque; Rosa Elena Cárdenas-Guerra; Jaime Ortega-López; Laura Itzel Quintas-Granados; M. Elizbeth Alvarez-Sánchez; Rossana Arroyo
This review focused on potential regulatory mechanisms of Trichomonas vaginalis virulence properties, cytoadherence, cytotoxicity, phagocytosis, hemolysis, induction of apoptosis, and immune evasion in response to environmental factors of the human urogenital tract, iron, zinc, and polyamines. Understanding the multifactorial nature of trichomonal pathogenesis and its regulation may help to unravel the survival strategies of trichomonads and to implement prevention policies, opportune diagnosis, and alternative treatments for control of trichomoniasis.
Proteomics | 2010
Lucero A. Ramón-Luing; Francisco Javier Rendón-Gandarilla; Rosa Elena Cárdenas-Guerra; Norma A. Rodríguez-Cabrera; Jaime Ortega-López; Leticia Avila-González; Claudia Angel-Ortiz; Carmen N. Herrera-Sánchez; Manuela Mendoza-García; Rossana Arroyo
Trichomonas vaginalis, a sexually transmitted parasite, has many cysteine proteinases (CPs); some are involved in trichomonal pathogenesis, express during infection, and antibodies against CPs have been detected in patient sera. The goal of this study was to identify the antigenic proteinases of T. vaginalis as potential biomarkers for trichomonosis. The proteases detected when T. vaginalis protein extracts are incubated without protease inhibitors, the trichomonad‐active degradome, and the immunoproteome were obtained by using 2‐DE, 2‐D‐zymograms, 2‐D‐Western blot (WB) assays with trichomonosis patient sera, and MS analysis. Forty‐nine silver‐stained spots were detected in the region of 200–21 kDa of parasite protease‐resistant extracts. A similar proteolytic pattern was observed in the 2‐D zymograms. Nine CPs were identified in the 30 kDa region (TvCP1, TvCP2, TvCP3, TvCP4, TvCP4‐like, TvCP12, TvCPT, TvLEGU‐1, and another legumain‐like CP). The major reactive spots to T. vaginalis‐positive patient sera by 2‐D‐WB corresponded to four papain‐like (TvCP2, TvCP4, TvCP4‐like, TvCPT), and one legumain‐like (TvLEGU‐1) CPs. The genes of TvCP4, TvCPT, and TvLEGU‐1 were cloned, sequenced, and expressed in Escherichia coli. Purified recombinant CPs were recognized by culture‐positive patient sera in 1‐D‐WB assays. These data show that some CPs could be potential biomarkers for serodiagnosis of trichomonosis.
Microbiology | 2011
Patricia Meza-Cervantez; Arturo González-Robles; Rosa Elena Cárdenas-Guerra; Jaime Ortega-López; Emma Saavedra; Erika Pineda; Rossana Arroyo
The Trichomonas vaginalis 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate:ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of T. vaginalis adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, T. vaginalis PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely pfo a.
BioMed Research International | 2015
Rossana Arroyo; Rosa Elena Cárdenas-Guerra; Elisa Figueroa-Angulo; Jonathan Puente-Rivera; Olga Zamudio-Prieto; Jaime Ortega-López
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
The International Journal of Biochemistry & Cell Biology | 2015
Rosa Elena Cárdenas-Guerra; Jaime Ortega-López; Claudia Ivonne Flores-Pucheta; Claudia G. Benítez-Cardoza; Rossana Arroyo
Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.
The International Journal of Biochemistry & Cell Biology | 2018
Diana Belén Sánchez-Rodríguez; Jaime Ortega-López; Rosa Elena Cárdenas-Guerra; Gerardo Reséndiz-Cardiel; Bibiana Chávez-Munguía; Anel Lagunes-Guillén; Rossana Arroyo
Trichomonas vaginalis is a flagellated protist responsible for human trichomoniasis. T. vaginalis has three genes encoding for endogenous cysteine proteinase (CP) inhibitors, known as trichocystatin-1 through trichocystatin-3 (TC-1, TC-2, and TC-3). These inhibitors belong to the cystatin family. In this study, we characterized trichocystatin-3 (TC-3), an endogenous cysteine proteinase (CP) inhibitor of T. vaginalis. TC-3 possesses a signal peptide in the N-terminus and two putative glycosylation sites (typical of family 2, cystatins) but lacks the PW motif and cysteine residues (typical of family 1, stefins). Native TC-3 was recognized as an ∼18 kDa protein band in a T. vaginalis protein extract. By confocal microscopy, endogenous TC-3 was found in the Golgi complex, cytoplasm, large vesicles, and the plasma membrane. These localizations are consistent with an in silico prediction. In addition, the purified recombinant protein (TC-3r) functions as an inhibitor of cathepsin L CPs, such as human liver cathepsin L and trichomonad CPs, present in a proteinase-resistant extract (PRE). Via a pull-down assay using TC-3r as bait and PRE, we identified several trichomonad CPs targeted by TC-3, primarily TvCP3. These CP-TC-3 interactions occur in vesicles, in the cytoplasm, and on the parasite surface. In addition, TC-3r showed a protective effect on HeLa cell monolayers by inhibiting trichomonad surface CPs involved in cellular damage. Our results show that the endogenous inhibitor TC-3 plays a key role in the regulation of endogenous CP proteolytic activity.
The International Journal of Biochemistry & Cell Biology | 2018
Maria Inocente Mancilla-Olea; Jaime Ortega-López; Elisa E. Figueroa-Angulo; Leticia Ávila-González; Rosa Elena Cárdenas-Guerra; Jesús F. T. Miranda-Ozuna; Arturo González-Robles; Mar Saraí Hernández-García; Lizbeth Sánchez-Ayala; Rossana Arroyo
Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis.
Frontiers in Cellular and Infection Microbiology | 2018
Francisco Javier Rendón-Gandarilla; Víctor Álvarez-Hernández; Elizabeth J. Castañeda-Ortiz; Helios Cárdenas-Hernández; Rosa Elena Cárdenas-Guerra; Jesús Valdés; Abigail Betanzos; Bibiana Chávez-Munguía; Anel Lagunes-Guillén; Esther Orozco; Lilia López-Cánovas; Elisa Azuara-Liceaga
Telomeric Repeat Binding Factors (TRFs) are architectural nuclear proteins with critical roles in telomere-length regulation, chromosome end protection and, fusion prevention, DNA damage detection, and senescence regulation. Entamoeba histolytica, the parasite responsible of human amoebiasis, harbors three homologs of human TRFs, based on sequence similarities to their Myb DNA binding domain. These proteins were dubbed EhTRF-like I, II and III. In this work, we revealed that EhTRF-like I and II share similarity with human TRF1, while EhTRF-like III shares similarity with human TRF2 by in silico approach. The analysis of ehtrf-like genes showed they are expressed differentially under basal culture conditions. We also studied the cellular localization of EhTRF-like I and III proteins using subcellular fractionation and western blot assays. EhTRF-like I and III proteins were enriched in the nuclear fraction, but they were also present in the cytoplasm. Indirect immunofluorescence showed that these proteins were located at the nuclear periphery co-localizing with Lamin B1 and trimethylated H4K20, which is a characteristic mark of heterochromatic regions and telomeres. We found by transmission electron microscopy that EhTRF-like III was located in regions of more condensed chromatin. Finally, EMSA assays showed that EhTRF-like III forms specific DNA-protein complexes with telomeric related sequences. Our data suggested that EhTRF-like proteins play a role in the maintenance of the chromosome ends in this parasite.
Data in Brief | 2018
Rosa Elena Cárdenas-Guerra; Moisés Martínez-Castillo; Jaime Ortega-López; Mineko Shibayama; Rossana Arroyo
The recombinant TvCP4 prepro region (ppTvCP4r) acts as an exogenous inhibitor of cathepsin L-like CPs from Trichomonas vaginalis (Cárdenas-Guerra et al., 2015 [1]). Here, we present the dataset of the trichomonad ppTvCP4r inhibitory effect against the CP proteolytic activities from other microorganisms, such as Naegleria fowleri and Acanthamoeba castellanii free-living amoeba. The proteolytic activity inhibition of total crude extracts (TCEs) of N. fowleri and A. castellanii was determined and recorded using a fluorogenic substrate specific for cathepsin L CPs without or with a ppTvCP4r treatment at different concentrations and pH.
Future Microbiology | 2017
Moisés Martínez-Castillo; Rosa Elena Cárdenas-Guerra; Rossana Arroyo; Anjan Debnath; Mario A. Rodríguez; Myrna Sabanero; Fernando Flores-Sánchez; Fernando Navarro-Garcia; Jesús Serrano-Luna; Mineko Shibayama
AIM The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.