Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Krajmalnik-Brown is active.

Publication


Featured researches published by Rosa Krajmalnik-Brown.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Human gut microbiota in obesity and after gastric bypass

Husen Zhang; John K. DiBaise; Andrea Zuccolo; Dave Kudrna; Michele Braidotti; Yeisoo Yu; Prathap Parameswaran; Michael D. Crowell; Rod A. Wing; Bruce E. Rittmann; Rosa Krajmalnik-Brown

Recent evidence suggests that the microbial community in the human intestine may play an important role in the pathogenesis of obesity. We examined 184,094 sequences of microbial 16S rRNA genes from PCR amplicons by using the 454 pyrosequencing technology to compare the microbial community structures of 9 individuals, 3 in each of the categories of normal weight, morbidly obese, and post-gastric-bypass surgery. Phylogenetic analysis demonstrated that although the Bacteria in the human intestinal community were highly diverse, they fell mainly into 6 bacterial divisions that had distinct differences in the 3 study groups. Specifically, Firmicutes were dominant in normal-weight and obese individuals but significantly decreased in post-gastric-bypass individuals, who had a proportional increase of Gammaproteobacteria. Numbers of the H2-producing Prevotellaceae were highly enriched in the obese individuals. Unlike the highly diverse Bacteria, the Archaea comprised mainly members of the order Methanobacteriales, which are H2-oxidizing methanogens. Using real-time PCR, we detected significantly higher numbers of H2-utilizing methanogenic Archaea in obese individuals than in normal-weight or post-gastric-bypass individuals. The coexistence of H2-producing bacteria with relatively high numbers of H2-utilizing methanogenic Archaea in the gastrointestinal tract of obese individuals leads to the hypothesis that interspecies H2 transfer between bacterial and archaeal species is an important mechanism for increasing energy uptake by the human large intestine in obese persons. The large bacterial population shift seen in the post-gastric-bypass individuals may reflect the double impact of the gut alteration caused by the surgical procedure and the consequent changes in food ingestion and digestion.


Mayo Clinic Proceedings | 2008

Gut Microbiota and Its Possible Relationship With Obesity

John K. DiBaise; Husen Zhang; Michael D. Crowell; Rosa Krajmalnik-Brown; G. Anton Decker; Bruce E. Rittmann

Obesity results from alterations in the bodys regulation of energy intake, expenditure, and storage. Recent evidence, primarily from investigations in animal models, suggests that the gut microbiota affects nutrient acquisition and energy regulation. Its composition has also been shown to differ in lean vs obese animals and humans. In this article, we review the published evidence supporting the potential role of the gut microbiota in the development of obesity and explore the role that modifying the gut microbiota may play in its future treatment. Evidence suggests that the metabolic activities of the gut microbiota facilitate the extraction of calories from ingested dietary substances and help to store these calories in host adipose tissue for later use. Furthermore, the gut bacterial flora of obese mice and humans include fewer Bacteroidetes and correspondingly more Firmicutes than that of their lean counterparts, suggesting that differences in caloric extraction of ingested food substances may be due to the composition of the gut microbiota. Bacterial lipopolysaccharide derived from the intestinal microbiota may act as a triggering factor linking inflammation to high-fat diet-induced metabolic syndrome. Interactions among microorganisms in the gut appear to have an important role in host energy homeostasis, with hydrogen-oxidizing methanogens enhancing the metabolism of fermentative bacteria. Existing evidence warrants further investigation of the microbial ecology of the human gut and points to modification of the gut microbiota as one means to treat people who are over-weight or obese.


Cell | 2016

Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease

Timothy R. Sampson; Justine W. Debelius; Taren Thron; Stefan Janssen; Gauri G. Shastri; Zehra Esra Ilhan; Collin Challis; Catherine E. Schretter; Sandra Rocha; Viviana Gradinaru; Marie-Françoise Chesselet; Ali Keshavarzian; Kathleen M. Shannon; Rosa Krajmalnik-Brown; Pernilla Wittung-Stafshede; Rob Knight; Sarkis K. Mazmanian

The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinsons disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.


Fems Microbiology Reviews | 2010

A kinetic perspective on extracellular electron transfer by anode-respiring bacteria.

César I. Torres; Andrew K. Marcus; Hyung Sool Lee; Prathap Parameswaran; Rosa Krajmalnik-Brown; Bruce E. Rittmann

In microbial fuel cells and electrolysis cells (MXCs), anode-respiring bacteria (ARB) oxidize organic substrates to produce electrical current. In order to develop an electrical current, ARB must transfer electrons to a solid anode through extracellular electron transfer (EET). ARB use various EET mechanisms to transfer electrons to the anode, including direct contact through outer-membrane proteins, diffusion of soluble electron shuttles, and electron transport through solid components of the extracellular biofilm matrix. In this review, we perform a novel kinetic analysis of each EET mechanism by analyzing the results available in the literature. Our goal is to evaluate how well each EET mechanism can produce a high current density (> 10 A m(-2)) without a large anode potential loss (less than a few hundred millivolts), which are feasibility goals of MXCs. Direct contact of ARB to the anode cannot achieve high current densities due to the limited number of cells that can come in direct contact with the anode. Slow diffusive flux of electron shuttles at commonly observed concentrations limits current generation and results in high potential losses, as has been observed experimentally. Only electron transport through a solid conductive matrix can explain observations of high current densities and low anode potential losses. Thus, a study of the biological components that create a solid conductive matrix is of critical importance for understanding the function of ARB.


PLOS ONE | 2013

Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children

Dae Wook Kang; Jin Gyoon Park; Zehra Esra Ilhan; Garrick Wallstrom; Joshua LaBaer; James B. Adams; Rosa Krajmalnik-Brown

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.


Environmental Science & Technology | 2009

Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization

César I. Torres; Rosa Krajmalnik-Brown; Prathap Parameswaran; Andrew K. Marcus; Greg Wanger; Yuri A. Gorby; Bruce E. Rittmann

Anode-respiring bacteria (ARB) are able to transfer electrons contained in organic substrates to a solid electrode. The selection of ARB should depend on the anode potential, which determines the amount of energy available for bacterial growth and maintenance. In our study, we investigated how anode potential affected the microbial diversity of the biofilm community. We used a microbial electrolysis cell (MEC) containing four graphite electrodes, each at a different anode potential (E(anode) = -0.15, -0.09, +0.02, and +0.37 V vs SHE). We used wastewater-activated sludge as inoculum, acetate as substrate, and continuous-flow operation. The two electrodes at the lowest potentials showed a faster biofilm growth and produced the highest current densities, reaching up to 10.3 A/m(2) at the saturation of an amperometric curve; the electrode at the highest potential produced a maximum of 0.6 A/m(2). At low anode potentials, clone libraries showed a strong selection (92-99% of total clones) of an ARB that is 97% similar to G. sulfurreducens. At the highest anode potential, the ARB community was diverse. Cyclic voltammograms performed on each electrode suggest that the ARB grown at the lowest potentials carried out extracellular electron transport exclusively by conducting electrons through the extracellular biofilm matrix. This is supported by scanning electron micrographs showing putative bacterial nanowires and copious EPS at the lowest potentials. Non-ARB and ARB using electron shuttles in the diverse community for the highest anode potential may have insulated the ARB using a solid conductive matrix from the anode. Continuous-flow operation and the selective pressure due to low anode potentials selected for G. sulfurreducens, which are known to consume acetate efficiently and use a solid conductive matrix for electron transport.


Applied and Environmental Microbiology | 2004

Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1

Rosa Krajmalnik-Brown; Tina Hölscher; Ivy N. Thomson; F. Michael Saunders; Kirsti M. Ritalahti; Frank E. Löffler

ABSTRACT Dehalococcoides sp. strain BAV1 couples growth with the reductive dechlorination of vinyl chloride (VC) to ethene. Degenerate primers targeting conserved regions in reductive dehalogenase (RDase) genes were designed and used to PCR amplify putative RDase genes from strain BAV1. Seven unique RDase gene fragments were identified. Transcription analysis of VC-grown BAV1 cultures suggested that bvcA was involved in VC reductive dechlorination, and the complete sequence of bvcA was obtained. bvcA was absent in Dehalococcoides isolates that failed to respire VC, yet was detected in four of eight VC-respiring mixed cultures.


Biotechnology and Bioengineering | 2009

Syntrophic interactions among anode respiring bacteria (ARB) and Non‐ARB in a biofilm anode: electron balances

Prathap Parameswaran; César I. Torres; Hyung Sool Lee; Rosa Krajmalnik-Brown; Bruce E. Rittmann

We demonstrate that the coulombic efficiency (CE) of a microbial electrolytic cell (MEC) fueled with a fermentable substrate, ethanol, depended on the interactions among anode respiring bacteria (ARB) and other groups of micro‐organisms, particularly fermenters and methanogens. When we allowed methanogenesis, we obtained a CE of 60%, and 26% of the electrons were lost as methane. The only methanogenic genus detected by quantitative real‐time PCR was the hydrogenotrophic genus, Methanobacteriales, which presumably consumed all the hydrogen produced during ethanol fermentation (∼30% of total electrons). We did not detect acetoclastic methanogenic genera, indicating that acetate‐oxidizing ARB out‐competed acetoclastic methanogens. Current production and methane formation increased in parallel, suggesting a syntrophic interaction between methanogens and acetate‐consuming ARB. When we inhibited methanogenesis with 50 mM 2‐bromoethane sulfonic acid (BES), the CE increased to 84%, and methane was not produced. With no methanogenesis, the electrons from hydrogen were converted to electrical current, either directly by the ARB or channeled to acetate through homo‐acetogenesis. This illustrates the key role of competition among the various H2 scavengers and that, when the hydrogen‐consuming methanogens were present, they out‐competed the other groups. These findings also demonstrate the importance of a three‐way syntrophic relationship among fermenters, acetate‐consuming ARB, and a H2 consumer during the utilization of a fermentable substrate. To obtain high coulombic efficiencies with fermentable substrates in a mixed population, methanogens must be suppressed to promote new interactions at the anode that ultimately channel the electrons from hydrogen to current. Biotechnol. Bioeng. 2009;103: 513–523.


Nutrition in Clinical Practice | 2012

Effects of Gut Microbes on Nutrient Absorption and Energy Regulation

Rosa Krajmalnik-Brown; Zehra Esra Ilhan; Dae Wook Kang; John K. DiBaise

Malnutrition may manifest as either obesity or undernutrition. Accumulating evidence suggests that the gut microbiota plays an important role in the harvest, storage, and expenditure of energy obtained from the diet. The composition of the gut microbiota has been shown to differ between lean and obese humans and mice; however, the specific roles that individual gut microbes play in energy harvest remain uncertain. The gut microbiota may also influence the development of conditions characterized by chronic low-level inflammation, such as obesity, through systemic exposure to bacterial lipopolysaccharide derived from the gut microbiota. In this review, the role of the gut microbiota in energy harvest and fat storage is explored, as well as differences in the microbiota in obesity and undernutrition.


Bioresource Technology | 2011

Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology

E.I. Garcia-Peña; Prathap Parameswaran; Dae Wook Kang; M. Canul-Chan; Rosa Krajmalnik-Brown

This study evaluated the feasibility of methane production from fruit and vegetable waste (FVW) obtained from the central food distribution market in Mexico City using an anaerobic digestion (AD) process. Batch systems showed that pH control and nitrogen addition had significant effects on biogas production, methane yield, and volatile solids (VS) removal from the FVW (0.42 m(biogas)(3)/kg VS, 50%, and 80%, respectively). Co-digestion of the FVW with meat residues (MR) enhanced the process performance and was also evaluated in a 30 L AD system. When the system reached stable operation, its methane yield was 0.25 (m(3)/kg TS), and the removal of the organic matter measured as the total chemical demand (tCOD) was 65%. The microbial population (general Bacteria and Archaea) in the 30 L system was also determined and characterized and was closely correlated with its potential function in the AD system.

Collaboration


Dive into the Rosa Krajmalnik-Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youneng Tang

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Rolf U. Halden

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Michal Ziv-El

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge