Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa M. del Angel is active.

Publication


Featured researches published by Rosa M. del Angel.


Journal of Virology | 2005

Heat Shock Protein 90 and Heat Shock Protein 70 Are Components of Dengue Virus Receptor Complex in Human Cells

Jorge Reyes-del Valle; Salvador Chávez-Salinas; Fernando Medina; Rosa M. del Angel

ABSTRACT Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl-β-cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry.


Journal of Virology | 2001

Identification of a Putative Coreceptor on Vero Cells That Participates in Dengue 4 Virus Infection

José de Jesús Martı́nez-Barragán; Rosa M. del Angel

ABSTRACT Dengue virus infects target cells by attaching to a cell surface receptor through the envelope (E) glycoprotein, located on the surface of the viral membrane. On Vero and BHK cells, heparan sulfate (HS) moieties of proteoglycans are the receptors for dengue virus; however, additional proteins have also been described as putative dengue virus receptors on C6/36, HL60, and BM cells. HS can also act as a receptor for other types of viruses or as an attachment molecule for viruses that require additional host cell molecules to allow viral penetration. In this study we searched for molecules other than HS that could participate in dengue virus infection of Vero cells. Labeled dengue 4 virus bound with high affinity to two molecules of 74 and 44 kDa. Binding of dengue virus to the 74-kDa molecule was susceptible to protease and sodium periodate treatment and resistant to heparinase treatments. Lectins such as concanavalin A and wheat germ agglutinin prevented dengue virus binding to both the 74- and the 44-kDa protein in overlay assays, while phytohemagglutinin P did not affect binding, suggesting that carbohydrate residues (α-mannose orN-acetylglucosamine) are important in virus binding to host cells. Protease susceptibility, biotin labeling, and immunofluorescence with a polyclonal antibody raised against the 74-kDa protein consistently identified the protein on the surfaces of Vero cells. Moreover, the antibody against the 74-kDa protein was able to inhibit dengue virus infection. These data suggest that HS might serve as a primary receptor, probably concentrating virus particles on the surfaces of Vero cells, and then other molecules, such as the 74-kDa protein, might participate as coreceptors in viral penetration. The 74-kDa protein possibly constitutes part of a putative receptor complex for dengue virus infection of Vero cells.


Virology | 2008

Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT.

Clemente Mosso; Ivan J. Galván-Mendoza; Juan E. Ludert; Rosa M. del Angel

The endocytic pathway followed by dengue virus to infect the mosquito cells C6/36 HT was analyzed. Using DIL-labeled virions and real-time imaging it was determined that viral entry into C6/36 HT takes approximately 5 to 7 min. Pretreatment of C6/36 HT cells with sucrose and bafilomycin A, but not filipin, inhibited dengue virus infection up to 80%. Furthermore, the overexpression of dominant-negative mutants of Eps15, a molecule required for the formation of clathrin-coated vesicles, reduced dengue infection up to 50%, indicating that dengue virus entry is through clathrin-mediated endocytosis and is pH-dependent. By double-immunofluorescence assays, DIL-labeled particles were colocalized with early endosomes at 5 min and with lysosomes mainly at 30 min post-infection. Finally, disruption of the microtubule and microfilaments by nocodazole and by cytochalasin D reduced viral infection by more than 80%. Taken together these results indicate that dengue virions enter into C6/36 HT cells by clathrin-mediated endocytosis, using the endosomal pathway from early endosomes to acidic lysosomes before viral RNA is released into the cytoplasm.


Journal of Virology | 2000

Interaction of Cellular Proteins with the 5′ End of Norwalk Virus Genomic RNA

Ana Lorena Gutiérrez-Escolano; Zamirath Uribe Brito; Rosa M. del Angel; Xi Jiang

ABSTRACT The lack of a susceptible cell line and an animal model for Norwalk virus (NV) infection has prompted the development of alternative strategies to generate in vitro RNAs that approximate the authentic viral genome. This approach has allowed the study of viral RNA replication and gene expression. In this study, using mobility shift and cross-linking assays, we detected several cellular proteins from HeLa and CaCo-2 cell extracts that bind to, and form stable complexes with, the first 110 nucleotides of the 5′ end of NV genomic RNA, a region previously predicted to form a double stem-loop structure. These proteins had molecular weights similar to those of the HeLa cellular proteins that bind to the internal ribosomal entry site of poliovirus RNA. HeLa proteins La, PCBP-2, and PTB, which are important for poliovirus translation, and hnRNP L, which is possibly implicated in hepatitis C virus translation, interact with NV RNA. These protein-RNA interactions are likely to play a role in NV translation and/or replication.


Journal of Virology | 2003

Cellular Proteins from Human Monocytes Bind to Dengue 4 Virus Minus-Strand 3′ Untranslated Region RNA

Rosa Martha E. Yocupicio-Monroy; Fernando Medina; Jorge Reyes-del Valle; Rosa M. del Angel

ABSTRACT The synthesis of plus and minus RNA strands of several RNA viruses requires as a first step the interaction of some viral regulatory sequences with cellular and viral proteins. The dengue 4 virus genome, a single-stranded, positive-polarity RNA, is flanked by two untranslated regions (UTR) located in the 5′ and 3′ ends. The 3′UTR in the minus-strand RNA [3′UTR (−)] has been thought to function as a promoter for the synthesis of plus-strand RNA. To study the initial interaction between this 3′UTR and cellular and viral proteins, mobility shift assays were performed, and four ribonucleoprotein complexes (I through IV) were formed when uninfected and infected U937 cells (human monocyte cell line) interacted with the 3′UTR (−) of dengue 4 virus. Cross-linking assays with RNAs containing the complete 3′UTR (−) (nucleotides [nt] 101 to 1) or a partial sequence from nt 101 to 45 and nt 44 to 1 resulted in specific binding of some cellular proteins. Supermobility shift and immunoprecipitation assays demonstrated that the La protein forms part of these complexes. To determine the region in the 3′ UTR that interacted with the La protein, two deletion mutants were generated. The mutant (del-96), with a deletion of nt 96 to 101, was unable to interact with the La protein, suggesting that La interacted with the 5′ portion of the 3′UTR (−). Complex I, which was the main ribonucleoprotein complex formed with the 3′UTR (−) and which had the fastest electrophoretic migration, contained proteins such as calreticulin and protein disulfide isomerase, which constitute important components of the endoplasmic reticulum.


Virology | 2010

JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol.

Ivonne Ceballos-Olvera; Salvador Chávez-Salinas; Fernando Medina; Juan E. Ludert; Rosa M. del Angel

Infection with a broad diversity of viruses often activates host cell signaling pathways including the mitogen-activated protein kinase pathway. The present study established that dengue virus infection of human macrophages activates Jun NH(2)-terminal kinase (JNK) and the p38 MAPKs pathways. The activation was observed at early times after infection and occurs when either infectious or UV-inactivated dengue virus was used. The role of these activated kinases in dengue virus infection was evaluated using specific inhibitors. Inhibition of JNK and p38 kinases did result in a significant reduction in viral protein synthesis and in viral yield. Additionally, lipid rafts disruption induced a strong inhibition of JNK activation. These results suggest that, at early stages after dengue virus infection, MAPKs are activated and that activation of JNK and p38 is required for dengue virus infection.


Virology | 2013

The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity

Ruben Soto-Acosta; Clemente Mosso; Margot Cervantes-Salazar; Henry Puerta-Guardo; Fernando Medina; Liliana Favari; Juan E. Ludert; Rosa M. del Angel

Several cellular molecules and components, specifically, cholesterol and lipid rafts have been described as necessary elements for dengue virus entry and signaling in several human cells. Thus, changes in lipid rafts formation and cholesterol levels were evaluated. Here we report that the amount of total cholesterol and lipid rafts formation increase early after infection of Huh-7 cells. This augment correlates with an increase in the amount of low density lipoprotein receptor (LDLr) on the surface of infected cells and also with a lower phosphorylation level of the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). None of the changes were observed in Huh 7 cells infected with VSV used as a control. These results suggest that dengue virus infection increases intracellular cholesterol levels at early times post infection by triggering the modulation of LDL particles uptake and the increase in the enzymatic activity of HMG-CoA reductase.


Journal of General Virology | 2010

Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains.

Henry Puerta-Guardo; Clemente Mosso; Fernando Medina; Ferdinando Liprandi; Juan E. Ludert; Rosa M. del Angel

Dengue virus (DENV) is the causative agent of dengue fever and the more severe forms of the infection known as dengue haemorrhagic fever and dengue shock syndrome (DHF/DSS). Secondary infections with a serotype different from the primary infection are considered a risk factor for the development of DHF/DSS. One explanation for the increased risk of DHF/DSS development after heterologous secondary infections is the antibody-dependent enhancement (ADE) hypothesis. This hypothesis postulates that pre-existing non-neutralizing antibodies will form immune complexes with the new serotype-infecting virus that in turn will have enhanced capacity to infect macrophages and other Fcgamma receptor (FcgammaR)-bearing cells. Despite the evidence supporting the ADE hypothesis, the molecular mechanisms of ADE are not fully understood. In this work, we present evidence which indicates that intact lipid rafts are required for the ADE infection of U937 cells with DENV. Flow cytometry analysis to measure the percentage of infected cells showed that treatment of differentiated U937 cells with nystatin (30 microg ml(-1)), filipin (10 microg ml(-1)) or beta-methyl cyclodextrin (30 mM) significantly reduces (P<0.05) the ADE of DENV-4 infection in vitro without any effect on viability or the number of FcgammaR-bearing cells. Later cholesterol replenishment by supplementing treated cell cultures with bovine fetal serum for 24 h re-established lipid raft integrity and reversed the alteration of the ADE in vitro (P<0.05). Our results suggest that ADE of U937 infection by DENV requires the presence of cholesterol and cholesterol-rich membrane microdomains.


Virology Journal | 2008

Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells

Juan E. Ludert; Clemente Mosso; Ivonne Ceballos-Olvera; Rosa M. del Angel

Current methods for dengue virus quantitation are either time consuming, technically demanding or costly. As an alternative, the commercial enzyme immunoassay Platelia™ Dengue NS1 AG (Bio-Rad Laboratories) was used to monitor semiquantitatively dengue virus replication in cultured cells. The presence of NS1 protein was evaluated in supernatants from Vero and C6/36 HT cells infected with dengue virus. The amount of NS1 detected in the supernatants of infected cells was proportional to the initial MOI used and to the time of post infection harvest. This immunoassay was also able to detect the presence of NS1 in the supernatants of infected human macrophages. Inhibition of dengue virus replication in C6/36 HT cells treated with lysosomotropic drugs was readily monitored with the use of this assay. These results suggest that the Platelia™ Dengue NS1 AG kit can be used as a fast and reliable surrogate method for the relative quantitation of dengue virus replication in cultured cells.


American Journal of Tropical Medicine and Hygiene | 2013

Determination of Viremia and Concentration of Circulating Nonstructural Protein 1 in Patients Infected with Dengue Virus in Mexico

Sergio De La Cruz-Hernández; Hilario Flores-Aguilar; Silvia González-Mateos; Irma López-Martínez; Celia Alpuche-Aranda; Juan E. Ludert; Rosa M. del Angel

Higher levels of viremia and circulating nonstructural protein 1 (NS1) have been associated with dengue disease severity. In this study, viremia and circulating NS1 levels were determined in 225 serum samples collected from patients in Mexico infected with dengue virus serotypes 1 and 2 (DENV-1 and DENV-2). Patients with dengue hemorrhagic fever (DHF) who were infected with DENV-1 showed higher levels of circulating NS1 than patients with dengue fever (DF) (P = 0.0175). Moreover, NS1 levels were higher in patients with primary infections with DENV-1 than in patient infected with DENV-2 (P < 0.0001) and in patients with primary infections with DENV-2 than in patients with secondary infections with DENV-2 (P = 0.0051). Unexpectedly, viremia levels were higher in patients with DF than in those with DHF infected with either DENV-1 or DENV-2 (P = 0.0019 and P = 0.001, respectively) and in patients with primary infections than those with secondary DENV-2 infections (P < 0.0001). Results indicate that levels of circulating NS1 vary according to the infecting serotype, immunologic status (primary or secondary infection), and dengue disease severity.

Collaboration


Dive into the Rosa M. del Angel's collaboration.

Researchain Logo
Decentralizing Knowledge