Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa María Uribe is active.

Publication


Featured researches published by Rosa María Uribe.


Neuroendocrinology | 1993

Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus

Rosa María Uribe; Redondo Jl; Jean-Louis Charli; Patricia Joseph-Bravo

Thyrotropin releasing hormone (TRH) is released from the median eminence in response to neural stimuli evoked by different physiologic conditions (i.e. cold stress or suckling). The paraventricular nucleus (PVN) synthesizes pro-TRH and responds to negative thyroid hormone feedback. With the aim of determining if TRH biosynthesis is regulated in coordination with its release, we quantified TRH mRNA levels in PVN and in preoptic area-anterior hypothalamus (POA-AH) of rats sacrificed at different times during cold (0.5, 1, 2 or 6 h) or suckling (15, 30 and 60 min) stimulus; TRH-like immunoreactivity (TRH-LI) in medial basal hypothalamus (MBH) and in POA-AH as well as corticosterone, triiodothyronine and prolactin levels in serum were also measured. Increases of serum hormones were observed in both paradigms as has been reported. MBH TRH-LI content decreased during suckling by 33% (p < 0.01) after 1 h, but did not change after cold stimulation. At short stimulation times, PVN TRH mRNA levels were 85% (30 min of suckling) and 97% (1 h in the cold) higher than their respective controls, decreasing to normal after 1-2 h. In the POA-AH, another TRH synthesizing region not involved in TRH hypophysiotropic function, a similar transient enhancement of TRH mRNA (146%) was observed only in cold stimulated animals after 30 min, consistent with its suggested role in thermogenesis. These results show a fast and transient response of TRH mRNA in PVN evoked by a neural stimulus.


Neuroendocrinology | 2001

Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus

Edith Sánchez; Rosa María Uribe; Gabriel Corkidi; R. Thomas Zoeller; Miguel Cisneros; Magali Zacarias; Claudia Morales-Chapa; Jean-Louis Charli; Patricia Joseph-Bravo

Thyrotropin-releasing hormone (TRH) is released from the median eminence upon neural stimulation such as cold or suckling exposure. Concomitant with the cold- or suckling-induced release of TRH is a rapid and transient increase in the expression of proTRH mRNA in the paraventricular nucleus (PVN) of the hypothalamus. We employed two strategies to determine whether TRH neurons responding to cold exposure are different from those responding to suckling. First, we attempted to identify a marker of cellular activation in TRH neurons of the PVN. Cold induced c-fos expression in about 25% of TRH neurons of the PVN, but no induction was observed by suckling. Moreover, we explored the expression of a variety of immediate early genes including NGFI-A, fra-1 and c-jun, or CREB phosphorylation but found none to be induced by suckling. The number of cells expressing high levels of proTRH mRNA was counted and compared to total expressing cells. An increased number of cells expressing high levels of proTRH mRNA was observed when both stimuli were applied to the same animal, suggesting that different cells respond separately to each stimulus. We therefore analyzed the distribution of responsive TRH neurons as defined by the cellular level of proTRH mRNA. The proTRH mRNA signal was analyzed within three rostrocaudal zones of the PVN and within six mediolateral columns. Results showed that in response to cold, all areas of the PVN of the lactating rat present increased proTRH mRNA levels, including the anterior zone where few hypophysiotropic TRHergic cells are believed to reside. The distribution of the proTRH mRNA expressing cells in response to cold was quite comparable in female and in male rats. In contrast, the response after suckling was confined to the middle and caudal zones. Our results provide evidence of a functional specialization of TRH cells in the PVN.


Endocrinology | 1999

Endotoxin stimulates nitric oxide production in the paraventricular nucleus of the hypothalamus through nitric oxide synthase I: correlation with hypothalamic-pituitary-adrenal axis activation.

Rosa María Uribe; Soon Lee; Catherine Rivier

Nitric oxide (NO) is an unstable gas that is produced in brain tissues involved in the control of the activity of the hypothalamus-pituitary-adrenal (HPA) axis. Transcripts for constitutive neuronal NO synthase (NOS I), one of the enzymes responsible for NO formation in the brain, is up-regulated by systemic endotoxin [lipopolysaccharide (LPS)] injection. However, this change is delayed compared with LPS induced-ACTH release, which makes it difficult to determine whether it is functionally important for the hormonal response. To obtain a more resolutive time course of the NO response, we first measured NO in microdialysates of the paraventricular (PVN) nucleus of the hypothalamus. The iv injection of 100 microg/kg LPS induced a rapid and short-lived increase in concentrations of this gas, which corresponded to the initiation of the ACTH response. LPS-induced Ca2+-dependent NOS activity in the PVN as well as the number of PVN cells expressing citrulline (a compound produced stoichiometrically with NO) also increased significantly over a time course that corresponded to ACTH and corticosterone release. Finally, blockade of NO production with the arginine derivative Nomega-nitro-L-argininemethylester (L-NAME; 50 mg/kg, sc), which attenuated the ACTH response to LPS, virtually abolished basal NOS activity in the PVN, as well as anterior and neurointermediate lobes of the pituitary, and prevented the appearance of citrulline in the PVN of rats injected with LPS. Collectively, these results show that LPS-induced activation of the HPA axis correlates with the activation of the PVN NOergic system, and supports a stimulatory role for NO in the modulation of the HPA axis in response to immune challenges.


Cellular and Molecular Neurobiology | 1998

Multifactorial Modulation of TRH Metabolism

Patricia Joseph-Bravo; Rosa María Uribe; Miguel Angel Vargas; Leonor Pérez-Martínez; T. Zoeller; Jean-Louis Charli

Abstract1. Thyrotropin releasing hormone (TRH), synthesized in the paraventricular nucleus of the hypothalamus (PVN), is released in response to physiological stimuli through medianeminence nerve terminals to control thyrotropin or prolactin secretion from the pituitary.2. Several events participate in the metabolism of this neuropeptide: regulation of TRH biosynthesis and release as well as modulation of its inactivation by the target cell.3. Upon a physiological stimulus such as cold stress or suckling, TRH is released and levels of TRH mRNA increase in a fast and transient manner in the PVN; a concomitant increase in cfos is observed only with cold exposure.4. Hypothalamic cell cultures incubated with cAMP or phorbol esters show a rise in TRH mRNA levels; dexamethasone produces a further increase at short incubation times.TRH mRNA are thus controlled by transsynaptic and hormonal influences.5. Once TRH is released, it is inactivated by a narrow specificity ectoenzyme, pyroglu-tamyl peptidase II (PPII).6. In adenohypophysis, PPII is subject to stringent control: positive by thyroid hormones and negative by TRH; other hypothalamic factors such as dopamine and somatostatin also influence its activity.7. These combined approaches suggest that TRH action is modulated in a coordinate fashion.


Biochemical and Biophysical Research Communications | 1988

Neuronal TRH synthesis: developmental and circadian TRH mRNA levels

Luis Covarrubias; Rosa María Uribe; Milagros Méndez; Jean-Louis Charli; Patricia Joseph-Bravo

Peptide biosynthesis within a neuron involves several steps occurring at the soma and during its travel to the nerve terminal, where it accumulates to be released under stimulatory conditions. We have measured hypothalamic TRH and TRH mRNA during ontogeny and circadian cycle and observed that TRH mRNA variations are more prominent than TRH ones. On the basis of these results and in vitro release experiments, we propose a compensatory mechanism working at the nerve terminal which is activated after release.


Journal of Endocrinology | 2015

60 YEARS OF NEUROENDOCRINOLOGY TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis

Patricia Joseph-Bravo; Lorraine Jaimes-Hoy; Rosa María Uribe; Jean-Louis Charli

This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms which control hypothalamus-pituitary-thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques facilitated the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary-thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.


Brain Research | 1997

Expression of the proprotein convertases PC1 and PC2 mRNAs in thyrotropin releasing hormone neurons of the rat paraventricular nucleus of hypothalamus.

Edith Sánchez; Jean-Louis Charli; Claudia Fouilloux Morales; Gabriel Corkidi; Nabil G Seidah; Patricia Joseph-Bravo; Rosa María Uribe

PC1 and PC2 are subtilisin-like processing enzymes capable of cleaving thyrotropin releasing hormone (TRH) precursor (pro-TRH) at paired basic residues in vitro. In the paraventricular nucleus of the hypothalamus (PVN), pro-TRH is synthesized to control adenohypophysial thyrotropin and prolactin release. Biochemical and immunological approaches have shown that in the hypothalamus, pro-TRH is extensively cleaved at pairs of basic amino acids. We quantified, by two different approaches, in situ hybridization (ISH) on consecutive cryostat sections or double label ISH, the proportion of PVN TRH neurons containing either PC1 or PC2 mRNAs. Both techniques gave similar results: PC2 mRNA was present in 60-70% of TRH neurons, and PC1 mRNA in 37-46%. Values were similar in the anterior and medial parts of the parvocellular PVN. TRH neurons containing either PC1 or PC2 mRNA were found throughout the areas containing TRH cells without any evidence of anatomical segregation. These results suggest a biochemical heterogeneity in PVN TRH biosynthetic machinery.


Brain Research | 2007

BDNF up-regulates pre-pro-TRH mRNA expression in the fetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway.

Raimundo Ubieta; Rosa María Uribe; José A. González; Arlene García-Vázquez; Carlos Pérez-Monter; Leonor Pérez-Martínez; Patricia Joseph-Bravo; Jean-Louis Charli

Brain derived neurotrophic factor (BDNF) increases the levels of pre-pro-thyrotropin releasing hormone (TRH) mRNA in fetal rodent hypothalamic neurons that express TrkB receptors. The present studies aimed at better understanding the role of BDNF in establishing and maintaining the TRH phenotype in hypothalamic neurons during early development. To determine where BDNF regulates the expression of pre-pro-TRH mRNA in vivo, we compared the hypothalamic distribution of pre-pro-TRH mRNA to that of TrkB mRNA. Full-length TrkB (FL-TrkB) mRNA was detected earlier in development than pre-pro-TRH mRNA in the region that gives rise to the paraventricular nucleus of the hypothalamus (PVN). We also evaluated the effects of BDNF on the expression of pre-pro-TRH mRNA in vitro. BDNF up-regulated the levels of pre-pro-TRH mRNA in primary cell cultures obtained from the hypothalamus or the PVN of 17 days old fetuses or newborn rats. This effect was abolished by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK) 1/2 or 5. The effect of BDNF on pre-pro-TRH mRNA levels was reversible. The continuous application of BDNF led to a desensitization of the response at day 10 in vitro, an effect that correlated with a drop in the levels of FL-TrkB protein. In conclusion, BDNF enhances the expression of pre-pro-TRH mRNA in PVN neurons. This effect is reversible, decreases with time, and requires an active MEK. BDNF may contribute to the enhancement of pre-pro-TRH mRNA expression in the hypothalamic PVN during development.


Neurochemistry International | 2006

Amygdala kindling differentially regulates the expression of the elements involved in TRH transmission

P. de Gortari; Rosa María Uribe; Arlene García-Vázquez; Argel Aguilar-Valles; Adrián Martínez; A. Valdés; Jean-Louis Charli; Augusto Fernández-Guardiola; Patricia Joseph-Bravo

Subthreshold electrical stimulation of the amygdala (kindling) activates neuronal pathways increasing the expression of several neuropeptides including thyrotropin releasing-hormone (TRH). Partial kindling enhances TRH expression and the activity or its inactivating ectoenzyme; once kindling is established (stage V), TRH and its mRNA levels are further increased but TRH-binding and pyroglutamyl aminopeptidase II (PPII) activity decreased in epileptogenic areas. To determine whether variations in TRH receptor binding or PPII activity are due to regulation of their synthesis, mRNA levels of TRH receptors (R1, R2) and PPII were semi-quantified by RT-PCR in amygdala, frontal cortex and hippocampus of kindled rats sacrificed at stage II or V. Increased mRNA levels of PPII were found at stage II in amygdala and frontal cortex, and of pro-TRH and TRH-R2, in amygdala and hippocampus. At stage V, pro-TRH mRNA levels increased and those of PPII, decreased in the three regions; TRH-R2 mRNA levels diminished in amygdala and frontal cortex and of TRH-R1 only in amygdala. In situ hybridization analyses revealed, at stage II, enhanced TRH-R1 mRNA levels in dentate gyrus and amygdala while decreased in piriform cortex; those of TRH-R2 increased in amygdala, CA2, dentate gyrus, piriform cortex, thalamus and subiculum and of PPII, in CAs and piriform cortex. In contrast, at stage V decreased expression of TRH-R1 occurred in amygdala, CA2/3, dentate gyrus and piriform cortex; of TRH-R2 in CA2, thalamus and piriform cortex, and of PPII in CA2, and amygdala. The magnitude of changes differed between ipsi and contralateral side. These results support a trans-synaptic modulation of all elements involved in TRH transmission in conditions that stimulate the activity of TRHergic neurons. They show that reported changes in PPII activity or TRH-binding caused by kindling relate to regulation of the expression of TRH receptors and degrading enzyme.


Endocrinology | 2014

Voluntary Exercise Adapts the Hypothalamus-Pituitary-Thyroid Axis in Male Rats

Rosa María Uribe; Lorraine Jaimes-Hoy; Candy Ramírez-Martínez; Arlene García-Vázquez; Fidelia Romero; Miguel Cisneros; Antonieta Cote-Vélez; Jean-Louis Charli; Patricia Joseph-Bravo

The hypothalamic-pituitary thyroid (HPT) axis modulates energy homeostasis. Its activity decreases in conditions of negative energy balance but the effects of chronic exercise on the axis are controversial and unknown at hypothalamic level. Wistar male rats were exposed for up to 14 days to voluntary wheel running (WR), or pair-feeding (PF; 18% food restriction), or to repeated restraint (RR), a mild stressor. WR and RR diminished food intake; body weight gain decreased in the 3 experimental groups, but WAT mass and serum leptin more intensely in the WR group. WR, but not RR, produced a delayed inhibition of central markers of HPT axis activity. At day 14, in WR rats paraventricular nucleus-pro-TRH mRNA and serum TSH levels decreased, anterior pituitary TRH-receptor 1 mRNA levels increased, but serum thyroid hormone levels were unaltered, which is consistent with decreased secretion of TRH and clearance of thyroid hormones. A similar pattern was observed if WR animals were euthanized during their activity phase. In contrast, in PF animals the profound drop of HPT axis activity included decreased serum T3 levels and hepatic deiodinase 1 activity; these changes were correlated with an intense increase in serum corticosterone levels. WR effects on HPT axis were not associated with changes in the activity of the hypothalamic-pituitary adrenal axis, but correlated positively with serum leptin levels. These data demonstrate that voluntary WR adapts the status of the HPT axis, through pathways that are distinct from those observed during food restriction or repeated stress.

Collaboration


Dive into the Rosa María Uribe's collaboration.

Top Co-Authors

Avatar

Jean-Louis Charli

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Patricia Joseph-Bravo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Miguel Cisneros

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Miguel Angel Vargas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Gabriel Corkidi

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonieta Cote-Vélez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Arlene García-Vázquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lorraine Jaimes-Hoy

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Magali Zacarias

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge