Rosa Porcel
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa Porcel.
Journal of Experimental Botany | 2012
Ricardo Aroca; Rosa Porcel; Juan Manuel Ruiz-Lozano
A common effect of several abiotic stresses is to cause tissue dehydration. Such dehydration is caused by the imbalance between root water uptake and leaf transpiration. Under some specific stress conditions, regulation of root water uptake is more crucial to overcome stress injury than regulation of leaf transpiration. This review first describes present knowledge about how water is taken up by roots and then discusses how specific stress situations such as drought, salinity, low temperature, and flooding modify root water uptake. The rate of root water uptake of a given plant is the result of its root hydraulic characteristics, which are ultimately regulated by aquaporin activity and, to some extent, by suberin deposition. Present knowledge about the effects of different stresses on these features is also summarized. Finally, current findings regarding how molecular signals such as the plant hormones abscisic acid, ethylene, and salicylic acid, and how reactive oxygen species may modulate the final response of root water uptake under stress conditions are discussed.
Journal of Experimental Botany | 2012
Juan Manuel Ruiz-Lozano; Rosa Porcel; Charo Azcón; Ricardo Aroca
Excessive salt accumulation in soils is a major ecological and agronomical problem, in particular in arid and semi-arid areas. Excessive soil salinity affects the establishment, development, and growth of plants, resulting in important losses in productivity. Plants have evolved biochemical and molecular mechanisms that may act in a concerted manner and constitute the integrated physiological response to soil salinity. These include the synthesis and accumulation of compatible solutes to avoid cell dehydration and maintain root water uptake, the regulation of ion homeostasis to control ion uptake by roots, compartmentation and transport into shoots, the fine regulation of water uptake and distribution to plant tissues by the action of aquaporins, the reduction of oxidative damage through improved antioxidant capacity and the maintenance of photosynthesis at values adequate for plant growth. Arbuscular mycorrhizal (AM) symbiosis can help the host plants to cope with the detrimental effects of high soil salinity. There is evidence that AM symbiosis affects and regulates several of the above mentioned mechanisms, but the molecular bases of such effects are almost completely unknown. This review summarizes current knowledge about the effects of AM symbiosis on these physiological mechanisms, emphasizing new perspectives and challenges in physiological and molecular studies on salt-stress alleviation by AM symbiosis.
Agronomy for Sustainable Development | 2012
Rosa Porcel; Ricardo Aroca; Juan Manuel Ruiz-Lozano
Salinity is one of the most severe environmental stress as it decreases crop production of more than 20% of irrigated land worldwide. Hence, it is important to develop salt-tolerant crops. Understanding the mechanisms that enable plant growth under saline conditions is therefore required. Acclimation of plants to salinized conditions depends upon activation of cascades of molecular networks involved in stress sensing, signal transduction, and the expression of specific stress-related genes and metabolites. The stress signal is first perceived at the membrane level by the receptors and then transduced in the cell to switch on the stress-responsive genes which mediate stress tolerance. In addition to stress-adaptative mechanisms developed by plants, arbuscular mycorrhizal fungi have been shown to improve plant tolerance to abiotic environmental factors such as salinity. In this review, we emphasize the significance of arbuscular mycorrhizal fungi alleviation of salt stress and their beneficial effects on plant growth and productivity. Although salinity can affect negatively arbuscular mycorrhizal fungi, many reports show improved growth and performance of mycorrhizal plants under salt stress conditions. These positive effects are explained by improved host plant nutrition, higher K+/Na+ ratios in plant tissues and a better osmotic adjustment by accumulation of compatible solutes such as proline, glycine betaine, or soluble sugars. Arbuscular mycorrhizal plants also improve photosynthetic- and water use efficiency under salt stress. Arbuscular mycorrhizal plants enhance the activity of antioxidant enzymes in order to cope with the reactive oxygen species generated by salinity. At the molecular level, arbuscular mycorrhizal symbiosis regulates the expression of plant genes involved in the biosynthesis of proline, of genes encoding aquaporins, and of genes encoding late embryogenesis abundant proteins, with chaperone activity. The regulation of these genes allows mycorrhizal plants to maintain a better water status in their tissues. Gene expression patterns suggest that mycorrhizal plants are less strained by salt stress than non-mycorrhizal plants. In contrast, scarce information is available on the possible regulation by the arbuscular mycorrhizal symbiosis of plant genes encoding Na+/H+ antiporters or cyclic nucleotide-gated channels. These genes encode proteins with a key role in the regulation of uptake, distribution and compartimentation of sodium and other ions within the plant, and are major determinants for the salt sensitiveness of a plant. Thus, we propose that investigating the participation of cation proton antiporters and cyclic nucleotide-gated channels on arbuscular mycorrhizal symbiosis under salinity is a promising field that should shed further light on new mechanisms involved in the enhanced tolerance of mycorrhizal plants to salt stress.
Plant Molecular Biology | 2006
Rosa Porcel; Ricardo Aroca; Rosario Azcón; Juan Manuel Ruiz-Lozano
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and plant responses to drought still remains elusive. Moreover, the contribution of aquaporin genes to the enhanced tolerance to drought in arbuscular mycorrhisal (AM) plants has never been investigated. Therefore, we studied, at a molecular level, whether the expression of aquaporin-encoding genes in roots is altered by the AM symbiosis as a mechanism to enhance host plant tolerance to water deficit. In this study, genes encoding plasma membrane aquaporins (PIPs) from soybean and lettuce were cloned and their expression pattern studied in AM and nonAM plants cultivated under well-watered or drought stressed conditions. Results showed that AM plants responded to drought stress by down-regulating the expression of the PIP genes studied and anticipating its down-regulation as compared to nonAM plants. The possible physiological implications of this down-regulation of PIP genes as a mechanism to decrease membrane water permeability and to allow cellular water conservation is further discussed.
Microbial Ecology | 2007
Adriana Marulanda; Rosa Porcel; J. M. Barea; Rosario Azcón
This study compared the effectiveness of four arbuscular mycorrhizal (AM) fungal isolates (two autochthonous presumably drought-tolerant Glomus sp and two allochthonous presumably drought-sensitive strains) on a drought-adapted plant (Lavandula spica) growing under drought conditions. The autochthonous AM fungal strains produced a higher lavender biomass, specially root biomass, and a more efficient N and K absorption than with the inoculation of similar allochthonous strains under drought conditions. The autochthonous strains of Glomus intraradices and Glomus mosseae increased root growth by 35% and 100%, respectively, when compared to similar allochthonous strains. These effects were concomitant with an increase in water content and a decline in antioxidant compounds: 25% glutathione, 7% ascorbate and 15% H2O2 by G. intraradices, and 108% glutathione, 26% ascorbate and 43% H2O2 by G. mosseae. Glutathione and ascorbate have an important role in plant protection and metabolic function under water deficit; the low cell accumulation of these compounds in plants colonized by autochthonous AM fungal strains is an indication of high drought tolerance. Non-significant differences between antioxidant activities such as glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) in colonized plants were found. Thus, these results do not allow the generalization that GR, CAT and SOD were correlated with the symbiotic efficiency of these AM fungi on lavender drought tolerance. Plants colonized by allochthonous G. mosseae (the less efficient strain under drought conditions) had less N and K content than those colonized by similar autochthonous strain. These ions play a key role in osmoregulation. The AM symbiosis by autochthonous adapted strains also produced the highest intraradical and arbuscular development and extraradical mycelial having the greatest fungal SDH and ALP-ase activities in the root systems. Inoculation of autochthonous drought tolerant fungal strains is an important strategy that assured the greatest tolerance water stress contributing to the best lavender growth under drought.
Plant Cell and Environment | 2016
Juan Manuel Ruiz-Lozano; Ricardo Aroca; Angel M. Zamarreño; Sonia Molina; Beatriz Andreo-Jimenez; Rosa Porcel; José María García-Mina; Carolien Ruyter-Spira; Juan A. López-Ráez
Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress.
BMC Plant Biology | 2014
Rosa Porcel; Angel M. Zamarreño; José María García-Mina; Ricardo Aroca
BackgroundPlant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined.ResultsContrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b.ConclusionsPositive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.
Microbial Ecology | 2006
Rosa Porcel; Ricardo Aroca; Custodia Cano; Alberto Bago; Juan Manuel Ruiz-Lozano
In the present study, a 14-3-3 protein-encoding gene from Glomus intraradices has been identified after differential hybridization of a cDNA library constructed from the fungus growing in vitro and subjected to drought stress by addition of 25% PEG 6000. Subsequently, we have studied its expression pattern under drought stress in vitro and also when forming natural symbioses with different host plants. The results obtained suggest that Gi14-3-3 gene may be involved in the protection that the arbuscular mycorrhizal (AM) symbiosis confers to the host plant against drought stress. Our findings provide new evidences that the contribution of AM fungi to the enhanced drought tolerance of the host plant can be mediated by a group of proteins (the 14-3-3) that regulate both signaling pathways and also effector proteins involved in the final plant responses.
Mycorrhiza | 2005
Rosa Porcel; Manuel Gómez; Ralf Kaldenhoff; Juan Manuel Ruiz-Lozano
We investigated in two tobacco (Nicotiana tabacum) plant lines (wildtype or antisense mutant) whether impairment in expression of the plasma membrane aquaporin gene (NtAQP1) affects the arbuscular mycorrhizal (AM) fungal colonisation pattern or the symbiotic efficiency of AM fungi. These two objectives were investigated under well-watered and drought stress conditions. Both plant lines had a similar pattern of root colonisation under well-watered and drought stress conditions. In contrast, under drought stress, AM wildtype plants grew faster than mycorrhizal antisense plants. Plant gas exchange also appeared to depend on the expression of NtAQP1 and parallelled the determined growth increments. The implications of enhanced symplastic water transport via NtAQP1 for the efficiency of the AM symbiosis under drought stress conditions are further discussed.
Journal of Plant Physiology | 2015
Rosa Porcel; Susana Redondo-Gómez; Enrique Mateos-Naranjo; Ricardo Aroca; Rosalva Garcia; Juan Manuel Ruiz-Lozano
Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity.