Rosa Quirantes-Piné
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa Quirantes-Piné.
Cell Cycle | 2013
Javier A. Menendez; Jorge Joven; Gerard Aragonès; Enrique Barrajón-Catalán; Raúl Beltrán-Debón; Isabel Borrás-Linares; Jordi Camps; Bruna Corominas-Faja; Sílvia Cufí; Salvador Fernández-Arroyo; Anabel García-Heredia; Anna Hernández-Aguilera; María Herranz-López; Cecilia Jiménez-Sánchez; Eugeni López-Bonet; Jesús Lozano-Sánchez; Fedra Luciano-Mateo; Begoña Martin-Castillo; Vicente Martín-Paredero; Almudena Pérez-Sánchez; Cristina Oliveras-Ferraros; Marta Riera-Borrull; Esther Rodríguez-Gallego; Rosa Quirantes-Piné; Anna Rull; Laura Tomás-Menor; Alejandro Vazquez-Martin; Carlos Alonso-Villaverde; Vicente Micol; Antonio Segura-Carretero
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the “defective design” of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the “xenohormesis hypothesis,” which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of “immortal” cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-aging transcriptomic signatures. As such, EVOO secoiridoids constitute a new family of plant-produced gerosuppressant agents that molecularly “repair” the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging and aging-related diseases, including cancer.
Journal of Chromatography A | 2009
Rosa Quirantes-Piné; L. Funes; Vicente Micol; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena.
Phytochemical Analysis | 2013
Rosa Quirantes-Piné; Jesús Lozano-Sánchez; Miguel Herrero; Elena Ibáñez; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
INTRODUCTION Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. OBJECTIVE To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). METHOD Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. RESULTS This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. CONCLUSION The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices.
International Journal of Molecular Sciences | 2014
Isabel Borrás-Linares; Zorica Stojanović; Rosa Quirantes-Piné; David Arráez-Román; Jaroslava Švarc-Gajić; Alberto Fernández-Gutiérrez; Antonio Segura-Carretero
In an extensive search for bioactive compounds from plant sources, the composition of different extracts of rosemary leaves collected from different geographical zones of Serbia was studied. The qualitative and quantitative characterization of 20 rosemary (Rosmarinus officinalis) samples, obtained by microwave-assisted extraction (MAE), was determined by high performance liquid chromatography coupled to electrospray quadrupole-time of flight mass spectrometry (HPLC–ESI-QTOF-MS). The high mass accuracy and true isotopic pattern in both MS and MS/MS spectra provided by the QTOF-MS analyzer enabled the characterization of a wide range of phenolic compounds in the extracts, including flavonoids, phenolic diterpenes and abietan-type triterpenoids, among others. According to the data compiled, rosemary samples from Sokobanja presented the highest levels in flavonoids and other compounds such as carnosol, rosmaridiphenol, rosmadial, rosmarinic acid, and carnosic acid. On the other hand, higher contents in triterpenes were found in the extracts of rosemary from Gložan (Vojvodina).
Journal of Pharmaceutical and Biomedical Analysis | 2013
Celia Rodríguez-Pérez; Rosa Quirantes-Piné; N. Amessis-Ouchemoukh; Khodir Madani; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
Pistacia lentiscus L., commonly known as Mastic tree or lentisk, is a Mediterranean evergreen shrub widely used in traditional medicine to treat such diseases as eczema, diarrhoea, and throat infections. Furthermore, other properties are currently attributed to P. lentiscus, such as antioxidant capacity, hepatoprotective action, and anti-inflammatory effects. High-performance liquid chromatography with diode array coupled to electrospray ionization mass spectrometry (HPLC-ESI-QTOF-MS) was used for the comprehensive characterization of methanol extract from P. lentiscus leaves. After the optimisation of the HPLC-ESI-QTOF-MS method and the use of the negative ionization mode, 46 different compounds were identified, 20 of which were tentatively characterized for the first time in P. Lentiscus leaves. The majority of the compounds were quantified. Flavonoids, phenolic acids and their derivatives were the most abundant compounds, those with the highest concentrations being myricetin glycoside (6216.13 mg/kg of plant), catechin (3354.78 mg/kg of plant), β-glucogallin (2214.461 mg/kg of plant), and quercitrin gallate (1160 mg/kg of plant). The importance of the knowledge of plants is increasing and our study may help in the future to formulate nutraceutical preparations and will provide the basis for new investigation into activities of the various compounds found in P. lentiscus.
Journal of Agricultural and Food Chemistry | 2011
Jesús Lozano-Sánchez; Elisa Giambanelli; Rosa Quirantes-Piné; Lorenzo Cerretani; Alessandra Bendini; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.
Journal of Pharmaceutical and Biomedical Analysis | 2012
Salvador Fernández-Arroyo; A. Gómez-Martínez; L. Rocamora-Reverte; Rosa Quirantes-Piné; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez; J.A. Ferragut
Crude phenolic extracts (PE) have been obtained from naturally bearing Spanish extra-virgin olive oil (EVOO) showing different polyphenol families such as secoiridoids, phenolic alcohols, lignans, and flavones. EVOO-derived complex phenols (especially from the Arbequina variety olive) have been shown to suppress cell growth of SW480 and HT29 human colon adenocarcinoma cell lines. Inhibition of proliferation by EVOO-PE Arbequina variety extract was accompanied by apoptosis in both colon-cancer-cell lines and a limited G₂M cell-cycle arrest in the case of SW480 cells. The metabolized compounds from EVOO-PE in culture medium and cytoplasm of both cell lines were analyzed using nano-liquid chromatography (nanoLC) coupled with electrospray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS). The results showed many phenolic compounds and their metabolites both in the culture medium as well as in the cytoplasm. The main compounds identified from EVOO-PE were hydroxylated luteolin and decarboxymethyl oleuropein aglycone.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Rosa Quirantes-Piné; G. Zurek; Enrique Barrajón-Catalán; C. Bäßmann; Vicente Micol; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
Olive leaves, an easily available natural low-cost material, constitute a source of extracts with significant antitumor activity that inhibits cell proliferation in several breast-cancer-cell models. In this work, a metabolite-profiling approach has been used to assess the uptake and metabolism of phenolic compounds from an olive-leaf extract in the breast-cancer-cell line SKBR3 to evaluate the compound or compounds responsible for the cytotoxic activity. For this, the extract was firstly characterized quantitatively by high-performance liquid chromatography coupled to electrospray ionization-quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Then, SKBR3 cells were incubated with 200 μg/mL of the olive-leaf extract at different times (15 min, 1, 2, 24, and 48 h). A metabolite-profiling approach based on HPLC-ESI-QTOF-MS was used to determine the intracellular phenolic compounds, enabling the identification of 16 intact phenolic compounds from the extract and four metabolites derived from these compounds in the cell cytoplasm. The major compounds found within the cells were oleuropein, luteolin-7-O-glucoside and its metabolites luteolin aglycone and methyl-luteolin glucoside, as well as apigenin, and verbascoside. Neither hydroxytyrosol nor any of its metabolites were found within the cells at any incubation time. It is proposed that the major compounds responsible for the cytotoxic activity of the olive-leaf extract in SKBR3 cells are oleuropein and the flavones luteolin and apigenin, since these compounds showed high uptake and their antitumor activity has been previously reported.
Food Chemistry | 2015
Cristiano Augusto Ballus; Rosa Quirantes-Piné; Abdelhakim Bakhouche; Luiz Fernando de Oliveira da Silva; Adelson Francisco de Oliveira; Enilton Fick Coutinho; Dorli Mario da Croce; Antonio Segura-Carretero; Helena Teixeira Godoy
In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO.
Phytomedicine | 2013
Rosa Quirantes-Piné; Maria Herranz-López; L. Funes; Isabel Borrás-Linares; Vicente Micol; Antonio Segura-Carretero; Alberto Fernández-Gutiérrez
Lippia citriodora (lemon verbena) has been widely used in folk medicine for its pharmacological properties. Verbascoside, the most abundant compound in this plant, has protective effects associated mostly with its strong antioxidant activity. The purpose of this study was to test the effect of L. citriodora extract intake on the antioxidant response of blood cells and to correlate this response with the phenolic metabolites found in plasma. For this purpose, firstly the L. citriodora extract was characterized and its radical scavenging activity was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Then, catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GRed) activities were determined in lymphocytes, erythrocytes, and neutrophils isolated from rats after acute intake of L. citriodora. Phenolic metabolites were analyzed in the same plasma samples by HPLC-ESI-TOF-MS. Myeloperoxidase (MPO) activity in neutrophils, which has been proposed as a marker for inflammatory vascular damage, was also determined. After L. citriodora administration, the antioxidant enzymes activities significantly accelerated (p<0.05) while MPO activity subsided, indicating that the extract protects blood cells against oxidative damage and shows potential anti-inflammatory and antiatherogenic activities. The main compounds found in plasma were verbascoside and isoverbascoside at a concentration of 80±10 and 57±4 ng/ml, respectively. Five other metabolites derived from verbascoside and isoverbascoside were also found in plasma, namely hydroxytyrosol, caffeic acid, ferulic acid, ferulic acid glucuronide, and homoprotocatechuic acid, together with another eight phenolic compounds. Therefore, the phenylpropanoids verbascoside and isoverbascoside, as well as their metabolites, seem to be the responsible for the above-mentioned effects, although the post-transcriptional activation mechanism of blood-cell antioxidant enzymes by these compounds needs further investigation.