Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosa Serra is active.

Publication


Featured researches published by Rosa Serra.


Development | 2007

Intraflagellar transport is essential for endochondral bone formation

Courtney J. Haycraft; Qihong Zhang; Buer Song; Walker S. Jackson; Peter J. Detloff; Rosa Serra; Bradley K. Yoder

While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants has hindered research efforts to study the role of this organelle at later developmental stages. Thus, to investigate the role of cilia during limb development, we generated a conditional allele of the IFT protein Ift88 (polaris). Using the Cre-lox system, we disrupted cilia on different cell populations within the developing limb. While deleting cilia in regions of the limb ectoderm had no overt effect on patterning, disruption in the mesenchyme resulted in extensive polydactyly with loss of anteroposterior digit patterning and shortening of the proximodistal axis. The digit patterning abnormalities were associated with aberrant Shh pathway activity, whereas defects in limb outgrowth were due in part to disruption of Ihh signaling during endochondral bone formation. In addition, the limbs of mesenchymal cilia mutants have ectopic domains of cells that resemble chondrocytes derived from the perichondrium, which is not typical of Indian hedgehog mutants. Overall these data provide evidence that IFT is essential for normal formation of the appendicular skeleton through disruption of multiple signaling pathways.


Journal of Immunology | 2009

TGF-β Promotes Th17 Cell Development through Inhibition of SOCS3

Hongwei Qin; Lanfang Wang; Ting Feng; Charles O. Elson; Sandrine A. Niyongere; Sun Jung Lee; Stephanie L. Reynolds; Casey T. Weaver; Kevin Roarty; Rosa Serra; Etty N. Benveniste; Yingzi Cong

TGF-β, together with IL-6 and IL-21, promotes Th17 cell development. IL-6 and IL-21 induce activation of STAT3, which is crucial for Th17 cell differentiation, as well as the expression of suppressor of cytokine signaling (SOCS)3, a major negative feedback regulator of STAT3-activating cytokines that negatively regulates Th17 cells. However, it is still largely unclear how TGF-β regulates Th17 cell development and which TGF-β signaling pathway is involved in Th17 cell development. In this report, we demonstrate that TGF-β inhibits IL-6- and IL-21-induced SOCS3 expression, thus enhancing as well as prolonging STAT3 activation in naive CD4+CD25− T cells. TGF-β inhibits IL-6-induced SOCS3 promoter activity in T cells. Also, SOCS3 small interfering RNA knockdown partially compensates for the action of TGF-β on Th17 cell development. In mice with a dominant-negative form of TGF-β receptor II and impaired TGF-β signaling, IL-6-induced CD4+ T cell expression of SOCS3 is higher whereas STAT3 activation is lower compared with wild-type B6 CD4+ T cells. The addition of a TGF-β receptor I kinase inhibitor that blocks Smad-dependent TGF-β signaling greatly, but not completely, abrogates the effect of TGF-β on Th17 cell differentiation. Our data indicate that inhibition of SOCS3 and, thus, enhancement of STAT3 activation is at least one of the mechanisms of TGF-β promotion of Th17 cell development.


Development | 2007

Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis.

Eiki Koyama; Blanche Young; Motohiko Nagayama; Yoshihiro Shibukawa; Motomi Enomoto-Iwamoto; Masahiro Iwamoto; Yukiko Maeda; Beate Lanske; Buer Song; Rosa Serra; Maurizio Pacifici

The motor protein Kif3a and primary cilia regulate important developmental processes, but their roles in skeletogenesis remain ill-defined. Here we created mice deficient in Kif3a in cartilage and focused on the cranial base and synchondroses. Kif3a deficiency caused cranial base growth retardation and dysmorphogenesis, which were evident in neonatal animals by anatomical and micro-computed tomography (μCT) inspection. Kif3a deficiency also changed synchondrosis growth plate organization and function, and the severity of these changes increased over time. By postnatal day (P)7, mutant growth plates lacked typical zones of chondrocyte proliferation and hypertrophy, and were instead composed of chondrocytes with an unusual phenotype characterized by strong collagen II (Col2a1) gene expression but barely detectable expression of Indian hedgehog (Ihh), collagen X (Col10a1), Vegf (Vegfa), MMP-13 (Mmp13) and osterix (Sp7). Concurrently, unexpected developmental events occurred in perichondrial tissues, including excessive intramembranous ossification all along the perichondrial border and the formation of ectopic cartilage masses. Looking for possible culprits for these latter processes, we analyzed hedgehog signalling topography and intensity by monitoring the expression of the hedgehog effectors Patched 1 and Gli1, and of the hedgehog-binding cell-surface component syndecan 3. Compared with controls, hedgehog signaling was quite feeble within mutant growth plates as early as P0, but was actually higher and was widespread all along mutant perichondrial tissues. Lastly, we studied postnatal mice deficient in Ihh in cartilage; their cranial base defects only minimally resembled those in Kif3a-deficient mice. In summary, Kif3a and primary cilia make unique contributions to cranial base development and synchondrosis growth plate function. Their deficiency causes abnormal topography of hedgehog signaling, growth plate dysfunction, and un-physiologic responses and processes in perichondrial tissues, including ectopic cartilage formation and excessive intramembranous ossification.


Development | 2007

Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth

Kevin Roarty; Rosa Serra

Transforming growth factor-β (TGF-β) plays an essential role in growth and patterning of the mammary gland, and alterations in its signaling have been shown to illicit biphasic effects on tumor progression and metastasis. We demonstrate in mice that TGF-β (Tgfβ) regulates the expression of a non-canonical signaling member of the wingless-related protein family, Wnt5a. Loss of Wnt5a expression has been associated with poor prognosis in breast cancer patients; however, data are lacking with regard to a functional role for Wnt5a in mammary gland development. We show that Wnt5a is capable of inhibiting ductal extension and lateral branching in the mammary gland. Furthermore, Wnt5a-/- mammary tissue exhibits an accelerated developmental capacity compared with wild-type tissue, marked by larger terminal end buds, rapid ductal elongation, increased lateral branching and increased proliferation. Additionally, dominant-negative interference of TGF-β signaling impacts not only the expression of Wnt5a, but also the phosphorylation of discoidin domain receptor 1 (Ddr1), a receptor for collagen and downstream target of Wnt5a implicated in cell adhesion/migration. Lastly, we show that Wnt5a is required for TGF-β-mediated inhibition of ductal extension in vivo and branching in culture. This study is the first to show a requirement for Wnt5a in normal mammary development and its functional connection to TGF-β.


Gastroenterology | 2011

TGF-β2 Suppresses Macrophage Cytokine Production and Mucosal Inflammatory Responses in the Developing Intestine

David R. Kelly; Teodora Nicola; Namasivayam Ambalavanan; Sunil K. Jain; Joanne E. Murphy-Ullrich; Mohammad Athar; Masako Shimamura; Vineet Bhandari; Charles J. Aprahamian; Reed A. Dimmitt; Rosa Serra; Robin K. Ohls

BACKGROUND & AIMS Premature neonates are predisposed to necrotizing enterocolitis (NEC), an idiopathic, inflammatory bowel necrosis. We investigated whether NEC occurs in the preterm intestine due to incomplete noninflammatory differentiation of intestinal macrophages, which increases the risk of a severe mucosal inflammatory response to bacterial products. METHODS We compared inflammatory properties of human/murine fetal, neonatal, and adult intestinal macrophages. To investigate gut-specific macrophage differentiation, we next treated monocyte-derived macrophages with conditioned media from explanted human fetal and adult intestinal tissues. Transforming growth factor-β (TGF-β) expression and bioactivity were measured in fetal/adult intestine and in NEC. Finally, we used wild-type and transgenic mice to investigate the effects of deficient TGF-β signaling on NEC-like inflammatory mucosal injury. RESULTS Intestinal macrophages in the human preterm intestine (fetus/premature neonate), but not in full-term neonates and adults, expressed inflammatory cytokines. Macrophage cytokine production was suppressed in the developing intestine by TGF-β, particularly the TGF-β(2) isoform. NEC was associated with decreased tissue expression of TGF-β(2) and decreased TGF-β bioactivity. In mice, disruption of TGF-β signaling worsened NEC-like inflammatory mucosal injury, whereas enteral supplementation with recombinant TGF-β(2) was protective. CONCLUSIONS Intestinal macrophages progressively acquire a noninflammatory profile during gestational development. TGF-β, particularly the TGF-β(2) isoform, suppresses macrophage inflammatory responses in the developing intestine and protects against inflammatory mucosal injury. Enterally administered TGF-β(2) protected mice from experimental NEC-like injury.


Journal of Histochemistry and Cytochemistry | 2010

Primary Cilia Are Decreased in Breast Cancer: Analysis of a Collection of Human Breast Cancer Cell Lines and Tissues

Kun Yuan; Natalya Frolova; Yi Xie; Dezhi Wang; Leah M. Cook; Yeon-Jin Kwon; Adam D. Steg; Rosa Serra; Andra R. Frost

Primary cilia (PC) are solitary, sensory organelles that are critical for several signaling pathways. PC were detected by immunofluorescence of cultured cells and breast tissues. After growth for 7 days in vitro, PC were detected in ∼70% of breast fibroblasts and in 7–19% of epithelial cells derived from benign breast (184A1 and MCF10A). In 11 breast cancer cell lines, PC were present at a low frequency in four (from 0.3% to 4% of cells), but were absent in the remainder. The cancer cell lines with PC were all of the basal B subtype, which is analogous to the clinical triple-negative breast cancer subtype. Furthermore, the frequency of PC decreased with increasing degree of transformation/progression in the MCF10 and MDA-MB-435/LCC6 isogenic models of cancer progression. In histologically normal breast tissues, PC were frequent in fibroblasts and myoepithelial cells and less common in luminal epithelial cells. Of 26 breast cancers examined, rare PC were identified in cancer epithelial cells of only one cancer, which was of the triple-negative subtype. These data indicate a decrease or loss of PC in breast cancer and an association of PC with the basal B subtype. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


BMC Developmental Biology | 2007

C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and – independent pathways

Hanga Agoston; Sameena Khan; Claudine G. James; J. Ryan J. Gillespie; Rosa Serra; Lee-Anne Stanton; Frank Beier

BackgroundC-type natriuretic peptide (CNP) has recently been identified as an important anabolic regulator of endochondral bone growth, but the molecular mechanisms mediating its effects are not completely understood.ResultsWe demonstrate in a tibia organ culture system that pharmacological inhibition of p38 blocks the anabolic effects of CNP. We further show that CNP stimulates endochondral bone growth largely through expansion of the hypertrophic zone of the growth plate, while delaying mineralization. Both effects are reversed by p38 inhibition. We also performed Affymetrix microarray analyses on micro-dissected tibiae to identify CNP target genes. These studies confirmed that hypertrophic chondrocytes are the main targets of CNP signaling in the growth plate, since many more genes were regulated by CNP in this zone than in the others. While CNP receptors are expressed at similar levels in all three zones, cGMP-dependent kinases I and II, important transducers of CNP signaling, are expressed at much higher levels in hypertrophic cells than in other areas of the tibia, providing a potential explanation for the spatial distribution of CNP effects. In addition, our data show that CNP induces the expression of NPR3, a decoy receptor for natriuretic peptides, suggesting the existence of a feedback loop to limit CNP signaling. Finally, detailed analyses of our microarray data showed that CNP regulates numerous genes involved in BMP signaling and cell adhesion.ConclusionOur data identify novel target genes of CNP and demonstrate that the p38 pathway is a novel, essential mediator of CNP effects on endochondral bone growth, with potential implications for understanding and treatment of numerous skeletal diseases.


Current Topics in Developmental Biology | 2008

Cilia involvement in patterning and maintenance of the skeleton

Courtney J. Haycraft; Rosa Serra

Although the expression of cilia on chondrocytes was described over 40 years ago, the importance of this organelle in skeletal development and maintenance has only recently been recognized. Primary cilia are found on most mammalian cells and have been shown to play a role in chemosensation and mechanosensation. A growing number of human pleiotropic syndromes have been shown to be associated with ciliary or basal body dysfunction. Skeletal phenotypes, including alterations in limb patterning, endochondral bone formation, craniofacial development, and dentition, have been described in several of these syndromes. Additional insights into the potential roles and mechanisms of cilia action in the mammalian skeleton have been provided by research in model organisms including mouse and zebrafish. In this article we describe what is currently known about the localization of cilia in the skeleton as well as the roles and underlying molecular mechanisms of cilia in skeletal development.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Transforming growth factor-β signaling mediates hypoxia-induced pulmonary arterial remodeling and inhibition of alveolar development in newborn mouse lung

Namasivayam Ambalavanan; Teodora Nicola; James S. Hagood; Arlene Bulger; Rosa Serra; Joanne E. Murphy-Ullrich; Suzanne Oparil; Yiu-Fai Chen

Hypoxia causes abnormal neonatal pulmonary artery remodeling (PAR) and inhibition of alveolar development (IAD). Transforming growth factor (TGF)-beta is an important regulator of lung development and repair from injury. We tested the hypothesis that inhibition of TGF-beta signaling attenuates hypoxia-induced PAR and IAD. Mice with an inducible dominant-negative mutation of the TGF-beta type II receptor (DNTGFbetaRII) and nontransgenic wild-type (WT) mice were exposed to hypoxia (12% O(2)) or air from birth to 14 days of age. Expression of DNTGFbetaRII was induced by 20 microg/g ZnSO(4) given intraperitoneally daily from birth. PAR, IAD, cell proliferation, and expression of extracellular matrix (ECM) proteins were assessed. In WT mice, hypoxia led to thicker, more muscularized resistance pulmonary arteries and impaired alveolarization, accompanied by increases in active TGF-beta and phosphorylated Smad2. Hypoxia-induced PAR and IAD were greatly attenuated in DNTGFbetaRII mice given ZnSO(4) compared with WT control mice and DNTGFbetaRII mice not given ZnSO(4). The stimulatory effects of hypoxic exposure on pulmonary arterial cell proliferation and lung ECM proteins were abrogated in DNTGFbetaRII mice given ZnSO(4). These data support the conclusion that TGF-beta plays an important role in hypoxia-induced pulmonary vascular adaptation and IAD in the newborn animal model.


BMC Developmental Biology | 2010

Molecular profiling of the developing mouse axial skeleton: a role for Tgfbr2 in the development of the intervertebral disc

Philip Sohn; Megan K. Cox; Dongquan Chen; Rosa Serra

BackgroundVery little is known about how intervertebral disc (IVD) is formed or maintained. Members of the TGF-β superfamily are secreted signaling proteins that regulate many aspects of development including cellular differentiation. We recently showed that deletion of Tgfbr2 in Col2a expressing mouse tissue results in alterations in development of IVD annulus fibrosus. The results suggested TGF-β has an important role in regulating development of the axial skeleton, however, the mechanistic basis of TGF-β action in these specialized joints is not known. One of the hurdles to understanding development of IVD is a lack of known markers. To identify genes that are enriched in the developing mouse IVD and to begin to understand the mechanism of TGF-β action in IVD development, we undertook a global analysis of gene expression comparing gene expression profiles in developing mouse vertebrae and IVD. We also compared expression profiles in tissues from wild type and Tgfbr2 mutant mice as well as in sclerotome cultures treated with TGF-β or BMP4.ResultsLists of IVD and vertebrae enriched genes were generated. Expression patterns for several genes were verified either through in situ hybridization or literature/database searches resulting in a list of genes that can be used as markers of IVD. Cluster analysis using genes listed under the Gene Ontology terms multicellular organism development and pattern specification indicated that mutant IVD more closely resembled vertebrae than wild type IVD. We also generated lists of genes regulated by TGF-β or BMP4 in cultured sclerotome. As expected, treatment with BMP4 resulted in up-regulation of cartilage marker genes including Acan, Sox 5, Sox6, and Sox9. In contrast, treatment with TGF-β1 did not regulate expression of cartilage markers but instead resulted in up-regulation of many IVD markers including Fmod and Adamtsl2.ConclusionsWe propose TGF-β has two functions in IVD development: 1) to prevent chondrocyte differentiation in the presumptive IVD and 2) to promote differentiation of annulus fibrosus from sclerotome. We have identified genes that are enriched in the IVD and regulated by TGF-β that warrant further investigation as regulators of IVD development.

Collaboration


Dive into the Rosa Serra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Sohn

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andra R. Frost

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Courtney J. Haycraft

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hwa-Seon Seo

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Megan K. Cox

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michael R. Crowley

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Bradley K. Yoder

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Buer Song

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Elizabeth H. Mitchell

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge