Rosalba Putti
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosalba Putti.
PLOS ONE | 2014
Lillà Lionetti; Maria Pina Mollica; Immacolata Donizzetti; Giorgio Gifuni; Raffaella Sica; Angelica Pignalosa; Gina Cavaliere; Marcello Gaita; Chiara De Filippo; Antonio Zorzano; Rosalba Putti
Background Mitochondria are dynamic organelles that frequently undergo fission and fusion processes, and imbalances in these processes may be involved in obesity and insulin resistance. Aims The present work had the following aims: (a) to evaluate whether the mitochondrial dysfunction present in the hepatic steatosis induced by a high-fat diet is associated with changes in mitochondrial dynamics and morphology; (b) to evaluate whether effects on the above parameters differ between high-lard and high-fish-oil diets, as it has been suggested that fish oil may have anti-obesity and anti-steatotic effects by stimulating fatty acids utilisation. Methods The development of hepatic steatosis and insulin resistance was monitored in rats fed a high-lard or high-fish-oil diet. Immunohistochemical and electronic microscopic observations were performed on liver sections. In isolated liver mitochondria, assessments of fatty acids oxidation rate, proton conductance and oxidative stress (by measuring H2O2 release and aconitase activity) were performed. Western blot and immunohistochemical analyses were performed to evaluate the presence of proteins involved in mitochondrial dynamics (i.e., fusion and fission processes). To investigate the fusion process, mitofusin 2 and autosomal dominant optic atrophy-1 (OPA1) were analysed. To investigate the fission process, the presence of dynamin-related protein 1 (Drp1) and fission 1 protein (Fis1) was assessed. Results High-lard feeding elicited greater hepatic lipid accumulation, insulin resistance with associated mitochondrial dysfunction, greater oxidative stress and a shift towards mitochondrial fission processes (versus high-fish-oil feeding, which had an anti-steatotic effect associated with increased mitochondrial fusion processes). Conclusions Different types of high-fat diets differ in their effect on mitochondrial function and dynamic behaviour, leading to different cellular adaptations to over-feeding.
Nutrition Metabolism and Cardiovascular Diseases | 2011
Maria Pia Mollica; Lillà Lionetti; Rosalba Putti; Gina Cavaliere; Marcello Gaita; A. Barletta
We analyse how chronic overfeeding, by increasing circulating fatty acids, might lead to inflammation, insulin resistance (IR) and injury in the liver. Chronic overfeeding causes an increase in adipose tissue depots and is characterised by an increased presence of hypertrophic adipocytes when adipose tissue expandability is inadequate. Adipocyte hypertrophy is a possible stress condition for the endoplasmic reticulum (ER), which will activate inflammatory and apoptotic pathways and cause IR in adipose tissue. Insulin-resistant adipocytes, being more lipolytic and less liposynthetic, induce an increase in circulating free fatty acids. Moreover, the strongly compromised secretion/function of the adipocyte hormones, adiponectin and leptin, decreases lipid oxidation, particularly in the liver, causing lipid accumulation, ER stress and IR in hepatocytes. ER stress may lead to reduced very-low-density lipoprotein (VLDL) secretion and increased lipogenic gene expression despite the presence of IR. These events and reduced lipid oxidation may lead to further hepatic lipid accumulation. When the triglyceride storage capacity of hepatocytes is exceeded, hepatic injury may occur. ER-stressed steatotic hepatocytes activate apoptotic and inflammatory pathways, which trigger IR and the release of chemokines and cytokines, and these, in turn, elicit an increased influx of Kupffer cells (KCs) and hepatic stellate cells (HSCs) around dying hepatocytes. Soluble mediators, secreted mainly by ER-stressed steatotic hepatocytes and activated KCs, induce the transdifferentiation of HSCs to myofibroblasts, which secrete fibrogenic cytokines and matrix components that trigger fibrosis. In conclusion, chronic lipid overloading due to inadequate fat-storing capacity of adipose tissue can induce hepatic injury when triglyceride storage capacity of hepatocytes is exceeded.
Frontiers in Physiology | 2015
Rosalba Putti; Raffaella Sica; Vincenzo Migliaccio; Lillà Lionetti
Diet induced obesity is associated with impaired mitochondrial function and dynamic behavior. Mitochondria are highly dynamic organelles and the balance in fusion/fission is strictly associated with their bioenergetics. Fusion processes are associated with the optimization of mitochondrial function, whereas fission processes are associated with the removal of damaged mitochondria. In diet-induced obesity, impaired mitochondrial function and increased fission processes were found in liver and skeletal muscle. Diverse dietary fat sources differently affect mitochondrial dynamics and bioenergetics. In contrast to saturated fatty acids, omega 3 polyunsaturated fatty acids induce fusion processes and improve mitochondrial function. Moreover, the pro-longevity effect of caloric restriction has been correlated with changes in mitochondrial dynamics leading to decreased cell oxidative injury. Noteworthy, emerging findings revealed an important role for mitochondrial dynamics within neuronal populations involved in central regulation of body energy balance. In conclusion, mitochondrial dynamic processes with their strict interconnection with mitochondrial bioenergetics are involved in energy balance and diet impact on metabolic tissues.
International Journal of Molecular Sciences | 2014
Lillà Lionetti; Maria Pina Mollica; Raffaella Sica; Immacolata Donizzetti; Giorgio Gifuni; Angelica Pignalosa; Gina Cavaliere; Rosalba Putti
Dietary fat sources may differentially affect the development of inflammation in insulin-sensitive tissues during chronic overfeeding. Considering the anti-inflammatory properties of ω-3 fatty acids, this study aimed to compare the effects of chronic high-fish oil and high-lard diets on obesity-related inflammation by evaluating serum and tissue adipokine levels and histological features in insulin-sensitive tissues (white adipose tissue, skeletal muscle and liver). As expected, a high-lard diet induced systemic and peripheral inflammation and insulin resistance. Conversely, compared with a high-lard diet, a high-fish oil diet resulted in a lower degree of systemic inflammation and insulin resistance that were associated with a lower adipocyte diameter as well as lower immunoreactivity for transforming growth factor β 1 (TGFβ1) in white adipose tissue. A high-fish oil diet also resulted in a lower ectopic lipid depot, inflammation degree and insulin resistance in the skeletal muscle and liver. Moreover, a high-fish oil diet attenuated hepatic stellate cell activation and fibrogenesis in the liver, as indicated by the smooth muscle α-actin (α-SMA) and TGFβ1 levels. The replacement of lard (saturated fatty acids) with fish oil (ω-3 fatty acids) in chronic high-fat feeding attenuated the development of systemic and tissue inflammation.
Molecular Nutrition & Food Research | 2012
Lillà Lionetti; Gina Cavaliere; Paolo Bergamo; Giovanna Trinchese; Chiara De Filippo; Giorgio Gifuni; Marcello Gaita; Angelica Pignalosa; Immacolata Donizzetti; Rosalba Putti; Rossella Di Palo; A. Barletta; Maria Pina Mollica
Dietary PUFA, mainly those of the n-3 family, are known to play essential roles in the maintenance of energy balance and in the reduction of body fat deposition through the upregulation of mitochondrial uncoupling that is the main source of reactive oxygen species. We hypothesized that rat supplementation with raw donkeys milk (DM), characterized by low-fat content and higher n3:n6 ratio, may affect energy balance, lipid metabolism, and prooxidant status as compared to animals treated with cows milk. In the present study, the effects of drinking raw DM (for 4 weeks) on energy balance, lipid metabolism, antiinflammatory, and antioxidant/detoxifying defences was compared to that produced by rat intake of an iso-energetic amount of raw cows milk. The hypolipidemic effect produced by DM paralleled with the enhanced mitochondrial activity/proton leakage and with the increased activity or expression of mitochondrial markers namely, carnitine palmitoyl transferase and uncoupling protein 2. The association of decreased energy efficiency with reduced proinflammatory signs (TNF-α and LPS levels) with the significant increase antioxidant (total thiols) and detoxifying enzyme activities (glutathione-S-transferase NADH quinone oxidoreductase) in DM-treated animals, indicated that beneficial effects were attributable, at least in part, to the activation of nuclear factor 2 erythroid-related factor 2 pathway.
General and Comparative Endocrinology | 1992
Rosalba Putti; Angela Della Rossa; Lorenzo Varano; Vincenza Laforgia; Antimo Cavagnuolo
The comparative morphology of the endocrine pancreas was studied in 11 species of lacertids. Four major cell types were identified immunocytochemically in the endocrine pancreas: glucagon-immunoreactive A-cells, insulin-immunoreactive B-cells, somatostatin-(SRIF)-immunoreactive D-cells, and pancreatic polypeptide(PP)-immunoreactive F-cells. Different distributions of the four cell types were seen in the endocrine tissue within the exocrine parenchyma. F-cells were rare or absent in the splenic lobe and abundant in the duodenal lobe, in which they were usually widespread in the exocrine parenchyma and rarer in the islets. The other three cell types were always present in the islets. The central core consisted of B- and A-cells, with B-cells predominating. The peripheral mantle was formed by A-cells and less abundant D-cells. Rare D-cells were also found in the central core. D- and F-cells showed projections often closely associated with capillaries. The observed arrangements in islets and isolated cells may represent an endocrine network that, in addition to systemic actions, may regulate exocrine function in a paracrine fashion.
Frontiers in Physiology | 2016
Rosalba Putti; Vincenzo Migliaccio; Raffaella Sica; Lillà Lionetti
It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.
PLOS ONE | 2016
Gina Cavaliere; Giovanna Trinchese; Paolo Bergamo; Chiara De Filippo; Giuseppina Mattace Raso; Giorgio Gifuni; Rosalba Putti; Bottu Heleena Moni; Roberto Berni Canani; Rosaria Meli; Maria Pina Mollica
Objectives Omega (ω)-3 polyunsaturated fatty acids (PUFA) are dietary compounds able to attenuate insulin resistance. Anyway, the precise actions of ω-3PUFAs in skeletal muscle are overlooked. We hypothesized that PUFAs, modulating mitochondrial function and efficiency, would ameliorate pro-inflammatory and pro-oxidant signs of nutritionally induced obesity. Study Design To this aim, rats were fed a control diet (CD) or isocaloric high fat diets containing either ω-3 PUFA (FD) or lard (LD) for 6 weeks. Results FD rats showed lower weight, lipid gain and energy efficiency compared to LD-fed animals, showing higher energy expenditure and O2 consumption/CO2 production. Serum lipid profile and pro-inflammatory parameters in FD-fed animals were reduced compared to LD. Accordingly, FD rats exhibited a higher glucose tolerance revealed by an improved glucose and insulin tolerance tests compared to LD, accompanied by a restoration of insulin signalling in skeletal muscle. PUFAs increased lipid oxidation and reduced energy efficiency in subsarcolemmal mitochondria, and increase AMPK activation, reducing both endoplasmic reticulum and oxidative stress. Increased mitochondrial respiration was related to an increased mitochondriogenesis in FD skeletal muscle, as shown by the increase in PGC1-α and -β. Conclusions our data strengthened the association of high dietary ω3-PUFA intake with reduced mitochondrial energy efficiency in the skeletal muscle.
General and Comparative Endocrinology | 2009
Rosalba Putti; Ettore Varricchio; Coccia Elena; Marina Paolucci
In this study we assessed the effect of leptin treatment on testicular morphology, spermatogenesis, Peroxisome Proliferator Activated Receptor (PPAR) alpha, 17beta-hydroxysteroide dehydrogenase, 17beta-estradiol and testosterone levels in the testis and blood of the lizard Podarcis sicula at the beginning of summer regression before entering the refractory period, when lizards no longer respond to hormonal and environmental stimuli. Lizards treated with five injections of leptin showed seminiferous tubules with germinal cells at all stages and wider lumina with respect to the controls. After 10 injections, the diameter of the lumina increased compared to the controls and 5 injection-group. After 10 injections plus 20 days before the sacrifice, the seminiferous tubules with open lumina and germinal cells were less abundant than in the 5 and 10 injection-groups. In all groups, the epididymis epithelium was higher than in the controls, with mitosis and binucleated cells. In both the control and treated animals secondary spermatocytes and spermatids were immunoreactive to leptin receptor and PPARalpha. In treated animals the interstitial cells and peritubular fibrocytes were also leptin receptor immunoreactive, while PPARalpha immunoreactivity translocated from the cytoplasm to the nucleus. 17beta-HSD immunoreactivity was present in the spermatids and interstitial cells of control lizards and in secondary spermatocytes and spermatids of treated lizards. Leptin treatment had no statistically significant effect on testicular and circulating 17beta-estradiol and testosterone levels. These observations indicate that leptin brings about a delay in testis summer regression in Podarcis sicula, playing a regulatory role in reproduction in this species as already hypothesized for mammals.
Tissue & Cell | 1997
Rosalba Putti; A. Della Rossa; M. Maglio; G. Tagliafierro
The endocrine pancreas of three red frogs was studied immunohistochemically. It consisted of islets and diffuse endocrine cells. The islets showed a mammalian-like arrangement with a central core of B cells and a peripheral mantle of A/PP cells. A few D and VIP cells were also present. Several regulatory peptides were co-localized in the same endocrine cells by consecutive sections and double-labeling studies. The A/PP cells were formed by subpopulations of cells showing various types of immunoreactivity and varying degrees of immunolabeling. Generally, glucagon/pancreatic polypeptide, glucagon/pancreatic polypeptide/peptide tyrosine tyrosine and glucagon/pancreatic polypeptide/neuropeptide tyrosine immunoreactivities were present in the islets and in the endocrine cells scattered throughout the exocrine parenchyma (the diffuse component). Some specimens, mainly belonging to Rana dalmatina, showed evident periinsular halos around the islets. The diffuse component was abundant, and mainly contained A/PP cells. It formed a net across the exocrine parenchyma; its interrelationship with the latter might occur by a paracrine mechanism.