Rosalía Agusti
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosalía Agusti.
Molecular and Biochemical Parasitology | 1998
Rosalía Agusti; AliciaS. Couto; Oscar Campetella; AlbertoC.C. Frasch; RosaM. de Lederkremer
Both, culture-derived and metacyclic trypomastigotes of Trypanosoma cruzi shed a glycoprotein, the shed acute phase antigen, that is responsible for the trans-sialidase activity. In the present work the structure of the glycosylphosphatidylinositol membrane anchor of the trans-sialidase isolated from metacyclic forms was determined. Parasites were metabolically labelled with [9, 10(n)3H]-palmitic acid and the glycoprotein was purified by immunoprecipitation with a monoclonal antibody directed against the repetitive aminoacid sequence. Treatment of the glycoprotein with phosphatidylinositol phospholipase C (PI-PLC) from Bacillus thuringiensis rendered a lipid that comigrated in TLC with a standard of ceramide. No alkylglycerol was detected in contrast with the results previously obtained for the trans-sialidase isolated from culture-derived trypomastigotes where both lipids were found. Chemical and chromatographic analysis showed that the lipid moiety is palmitoyldihydrosphingosine with a minor amount of stearoyldihydrosphingosine. The glycan constituent of the glycosylphosphatidylinositol-anchor was analysed by nitrous acid deamination of the aqueous phase of the PI-PLC treatment, followed by reduction with NaBH4 and hydrolysis of the phosphodiester with aqueous hydrofluoric acid. A major oligosaccharide was obtained and enzymatic treatment with exoglycosidases and further chromatography in a high pH anion exchange system showed that the trimannosyl core backbone is substituted by an alpha-galactose. A comparison between the lipid constituent of the glycosylphosphatidylinositol anchor of several proteins and their spontaneous shedding by the action of an endogenous PI-PLC was made.
Journal of Eukaryotic Microbiology | 2011
Rosa M. de Lederkremer; Rosalía Agusti; Roberto Docampo
ABSTRACT. Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell‐free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.
Bioorganic & Medicinal Chemistry | 2015
Rosalía Agusti; M. Eugenia Giorgi; Verónica M. Mendoza; Gustavo A. Kashiwagi; Rosa M. de Lederkremer; Carola Gallo-Rodriguez
The hexasaccharide β-D-Galp-(1→2)-[β-D-Galp-(1→3)]-β-D-Galp-(1→6)-[β-D-Galp(1→2)-β-D-Galf(1→4)]-D-GlcNAc (10) and its β-D-Galf-(1→2)-β-D-Galf containing isomer (7) are the largest carbohydrates in mucins of some strains of Trypanosoma cruzi. The terminal β-D-Galp units are sites of sialylation by the parasite trans-sialidase. Hexasaccharide 10 was chemically synthesized for the first time by a [3+3] nitrilium based convergent approach, using the trichloroacetimidate method of glycosylation. The (1)H NMR spectrum of its alditol was identical to the spectrum of the product released by β-elimination from the parasite mucin. The trans-sialylation reaction studied on the benzyl glycoside of 10 showed two monosialylated products whose relative abundance changed with time. On the other hand, only one product was produced by sialylation of the benzyl glycoside of 7. A preparative synthesis of the latter and spectroscopic analysis of the product unequivocally established the sialylation site at the less hindered (1→3)-linked galactopyranose.
Glycobiology | 2012
M. Eugenia Giorgi; Laura Ratier; Rosalía Agusti; Alberto C.C. Frasch; Rosa M. de Lederkremer
The trans-sialidase of Trypanosoma cruzi (TcTS) catalyzes the transfer of sialic acid from host glycoconjugates to terminal β-galactopyranosides in the mucins of the parasite. During infection, the enzyme is actively shed by the parasite to the bloodstream inducing hematological alterations. Lactitol prevents cell apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. Linear polyethyleneglycol (PEG) conjugates of lactose analogs were prepared but their clearance from blood was still quite fast. With the aim of improving their circulating half-lives in vivo, we now synthesized covalent conjugates of eight-arm PEG. The star-shape of these conjugates allows an increase in the molecular weight together with the loading of the active sugar. Two approaches were used for PEGylation of disaccharide derivatives containing β-D-Galp as the non-reducing unit. (1) Amide formation between benzyl β-D-galactopyranosyl-(1→6)-2-amino-2-deoxy-α-D-glucopyranoside and a succinimide-activated PEG. (2) Conjugation of lactobionolactone with amino end-functionalized PEG. Two 8-arm PEG derivatives (20 and 40 kDa) were used for each sugar. Substitution of all arms was proved by (1)H nuclear magnetic resonance (NMR) spectroscopy. The bioavailability of the conjugates in mice plasma was considerably improved with respect to the 5 kDa linear PEG conjugates retaining their inhibitory properties.
Advances in Carbohydrate Chemistry and Biochemistry | 2009
Rosa M. de Lederkremer; Rosalía Agusti
Glycobiology | 1997
Rosalía Agusti; Alicia S. Couto; Oscar Campetella; Alberto C.C. Frasch; Rosa M. de Lederkremer
Bioorganic & Medicinal Chemistry | 2007
Rosalía Agusti; M. Eugenia Giorgi; Verónica M. Mendoza; Carola Gallo-Rodriguez; Rosa M. de Lederkremer
Glycobiology | 2006
Laura Alaniz; Mariana Garcia; Carola Gallo-Rodriguez; Rosalía Agusti; Norma Sterín-Speziale; Silvia E. Hajos; Elida Alvarez
Carbohydrate Research | 2006
Verónica M. Mendoza; Rosalía Agusti; Carola Gallo-Rodriguez; Rosa M. de Lederkremer
Carbohydrate Research | 2005
Erika A. Wolski; Carlos Lima; Rosalía Agusti; Gustavo R. Daleo; Adriana B. Andreu; Rosa M. de Lederkremer