Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosalind E. M. Rickaby is active.

Publication


Featured researches published by Rosalind E. M. Rickaby.


Science | 2008

Phytoplankton calcification in a high-CO2 world

M. Debora Iglesias-Rodriguez; Paul R. Halloran; Rosalind E. M. Rickaby; Ian Robert Hall; Elena Colmenero-Hidalgo; John R. Gittins; Darryl R. H. Green; Toby Tyrrell; Samantha J. Gibbs; Peter von Dassow; E. Rehm; E. Virginia Armbrust; Karin Petra Boessenkool

Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the worlds oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures. Field evidence from the deep ocean is consistent with these laboratory conclusions, indicating that over the past 220 years there has been a 40% increase in average coccolith mass. Our findings show that coccolithophores are already responding and will probably continue to respond to rising atmospheric CO2 partial pressures, which has important implications for biogeochemical modeling of future oceans and climate.


Nature | 2011

Sensitivity of coccolithophores to carbonate chemistry and ocean acidification

Luc Beaufort; Ian Probert; T. de Garidel-Thoron; El Mahdi Bendif; D. Ruiz-Pino; N. Metzl; Catherine Goyet; N. Buchet; P. Coupel; Michaël Grelaud; Bjoern Rost; Rosalind E. M. Rickaby; C. de Vargas

About one-third of the carbon dioxide (CO2) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO2 have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO2 and concomitant decreasing concentrations of CO32−. Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.


Nature | 2009

Migration of the subtropical front as a modulator of glacial climate

Edouard Bard; Rosalind E. M. Rickaby

Ice cores extracted from the Antarctic ice sheet suggest that glacial conditions, and the relationship between isotopically derived temperatures and atmospheric have been constant over the last 800,000 years of the Late Pleistocene epoch. But independent lines of evidence, such as the extent of Northern Hemisphere ice sheets, sea level and other temperature records, point towards a fluctuating severity of glacial periods, particularly during the more extreme glacial stadials centred around 340,000 and 420,000 years ago (marine isotope stages 10 and 12). Previously unidentified mechanisms therefore appear to have mediated the relationship between insolation, CO2 and climate. Here we test whether northward migration of the subtropical front (STF) off the southeastern coast of South Africa acts as a gatekeeper for the Agulhas current, which controls the transport of heat and salt from the Indo-Pacific Ocean to the Atlantic Ocean. Using a new 800,000-year record of sea surface temperature and ocean productivity from ocean sediment core MD962077, we demonstrate that during cold stadials (particularly marine isotope stages 10 and 12), productivity peaked and sea surface temperature was up to 6 °C cooler than modern temperatures. This suggests that during these cooler stadials, the STF moved northward by up to 7° latitude, nearly shutting off the Agulhas current. Our results, combined with faunal assemblages from the south Atlantic show that variable northwards migration of the Southern Hemisphere STF can modulate the severity of each glacial period by altering the strength of the Agulhas current carrying heat and salt to the Atlantic meridional overturning circulation. We show hence that the degree of northwards migration of the STF can partially decouple global climate from atmospheric partial pressure of carbon dioxide, , and help to resolve the long-standing puzzle of differing glacial amplitudes within a consistent range of atmospheric .


Geology | 2010

Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events

Zunli Lu; Hugh C. Jenkyns; Rosalind E. M. Rickaby

Periods of globally distributed extreme oxygen depletion, so-called oceanic anoxic events (OAEs), have been recognized in the Mesozoic geological record and appear to be characteristic of episodes of extreme warmth. Here we explore the application of iodine/calcium ratios (I/Ca) in marine carbonate as a new geochemical proxy to constrain seawater redox change, and provide additional insights into the response of ocean chemistry to ancient climatic warming. Iodine has long been known as a redox-sensitive and biophilic element, mainly present as iodate and iodide in seawater, iodate converting to iodide under anoxic conditions. Laboratory experiments growing calcite crystals from solutions spiked with iodate show that this is the ionic species incorporated into the carbonate structure, likely substituting for the CO 3 2− ion. A fall in the I/Ca ratio measured in carbonates formed in shallow water by marine calcifiers during the early Toarcian and Cenomanian-Turonian OAEs is interpreted both as a response to a decrease in the iodate/iodide ratio in ocean waters and the drawdown of the global iodine inventory under conditions of accelerated organic-matter burial. The results suggest that I/Ca ratios in carbonates may be used to monitor seawater oxidation levels throughout Earth history.


Journal of Experimental Botany | 2016

Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms

Jodi N. Young; Ana M.C. Heureux; Robert E. Sharwood; Rosalind E. M. Rickaby; François M. M. Morel; Spencer M. Whitney

Highlight Broad variations in the CO2 fixation kinetics of diatom Rubisco indicate novel mechanistic diversity and large differences in their carbon-concentrating mechanism.


Paleoceanography | 2008

Opal (Zn/Si) ratios as a nearshore geochemical proxy in coastal Antarctica

Katharine Rosemary Hendry; Rosalind E. M. Rickaby

During the last 50 years, the Antarctic Peninsula has experienced rapid warming with associated retreat of 87% of marine and tidewater glacier fronts. Accelerated glacial retreat and iceberg calving may have a significant impact on the freshwater and nutrient supply to the phytoplankton communities of the highly productive coastal regions. However, commonly used biogenic carbonate proxies for nutrient and salinity conditions are not preserved in sediments from coastal Antarctica. Here we describe a method for the measurement of zinc to silicon ratios in diatom opal, (Zn/Si)opal, which is a potential archive in Antarctic marine sediments. A core top calibration from the West Antarctic Peninsula shows (Zn/Si)opal is a proxy for mixed layer salinity. We present down-core (Zn/Si)opal paleosalinity records from two rapidly accumulating sites taken from nearshore environments off the West Antarctic Peninsula which show an increase in meltwater input in recent decades. Our records show that the recent melting in this region is unprecedented for over 120 years.


Paleoceanography | 2014

I/Ca evidence for upper ocean deoxygenation during the PETM

Xiaoli Zhou; Ellen Thomas; Rosalind E. M. Rickaby; Arne Winguth; Zunli Lu

Anthropogenic global warming affects marine ecosystems in complex ways, and declining ocean oxygenation is a growing concern. Forecasting the geographical and bathymetric extent, rate, and intensity of future deoxygenation and its effects on oceanic biota, however, remains highly challenging because of the complex feedbacks in the Earth-ocean biota system. Information on past global warming events such as the Paleocene-Eocene Thermal Maximum (PETM, ~55.5 Ma), a potential analog for present and future global warming, may help in such forecasting. Documenting past ocean deoxygenation, however, is hampered by the lack of sensitive proxies for past oceanic oxygen levels throughout the water column. As yet no evidence has been presented for pervasive deoxygenation in the upper water column through expansion of oxygen minimum zones (OMZs). We apply a novel proxy for paleoredox conditions, the iodine to calcium ratio (I/Ca) in bulk coarse fraction sediment and planktonic foraminiferal tests from pelagic sites in different oceans, and compared our reconstruction with modeled oxygen levels. The reconstructed iodate gradients indicate that deoxygenation occurred in the upper water column in the Atlantic, Indian Oceans, and possibly the Pacific Ocean, as well during the PETM, due to vertical and potentially lateral expansion of OMZs.


Antarctic Science | 2011

Silicon isotopes in Antarctic sponges : an interlaboratory comparison

Katharine Rosemary Hendry; Melanie J. Leng; Laura F. Robinson; Hilary J. Sloane; Jerzy Blusztjan; Rosalind E. M. Rickaby; R. Bastian Georg; Alex N. Halliday

Abstract Cycling of deepwater silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and sub-Antarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenized sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralization. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses.


Nature Communications | 2016

Oxygen depletion recorded in upper waters of the glacial Southern Ocean

Zunli Lu; Babette Hoogakker; Claus Dieter Hillenbrand; Xiaoli Zhou; Ellen Thomas; Kristina M. Gutchess; Wanyi Lu; Luke Jones; Rosalind E. M. Rickaby

Oxygen depletion in the upper ocean is commonly associated with poor ventilation and storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium ratios (I/Ca) in recent planktonic foraminifera suggest that values less than ∼2.5 μmol mol−1 indicate the presence of O2-depleted water. Here we apply this proxy to estimate past dissolved oxygen concentrations in the near surface waters of the currently well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front (APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 μmol kg−1 during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the carbon engine of the Earths climate system. These new estimates of past ocean oxygenation variability may assist in resolving mechanisms responsible for the much-debated ice-age atmospheric CO2 decline.


Journal of Phycology | 2013

Cloning, Expression and Characterization of the δ-carbonic Anhydrase of Thalassiosira weissflogii (Bacillariophyceae)

Renee Bee Yong Lee; J. Andrew C. Smith; Rosalind E. M. Rickaby

Carbonic anhydrase (CA) is a ubiquitous metalloenzyme responsible for accelerating the interconversion of CO2 and bicarbonate. Although CAs are involved in a broad range of biochemical processes involving carboxylation or decarboxylation reactions, they are of special interest due to their role in photosynthetic CO2 assimilation in marine phytoplankton, especially under low‐CO2 conditions. Several phylogenetically independent classes of CAs have been identified in a variety of marine phytoplankton. TWCA1, first discovered in Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle, is the founding member of the δ‐class of CAs; these appear to be extracellular enzymes, but are still relatively poorly characterized. To date, it has remained uncertain whether TWCA1 possesses true CA activity due to the difficulty in producing a functional protein in a heterologous expression system. Herein we describe the fusion of a full‐length open reading frame of TWCA1 to the coding sequence of a self‐splicing intein in a pTWIN2 expression vector that has allowed successful production of a functional enzyme in Escherichia coli. Assay of the recombinant protein shows that TWCA1 is a catalytically active δ‐CA possessing both CO2 hydration and esterase activity.

Collaboration


Dive into the Rosalind E. M. Rickaby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge