Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosalind Kim is active.

Publication


Featured researches published by Rosalind Kim.


Nature | 1998

Crystal structure of a small heat-shock protein

Kyeong Kyu Kim; Rosalind Kim; Sung-Hou Kim

The principal heat-shock proteins that have chaperone activity (that is, they protect newly made proteins from misfolding) belong to five conserved classes: HSP100, HSP90, HSP70, HSP60 and the small heat-shock proteins (sHSPs). The sHSPs can form large multimeric structures and have a wide range of cellular functions, including endowing cells with thermotolerance in vivo, and being able to act as molecular chaperones in vitro; sHSPs do this by forming stable complexes with folding intermediates of their protein substrates,. However, there is little information available about these structures or the mechanism by which substrates are protected from thermal denaturation by sHSPs. Here we report the crystal structure of a small heat-shock protein from Methanococcus jannaschii, a hyperthermophilic archaeon. The monomeric folding unit is a composite β-sandwich in which one of the β-strands comes from a neighbouring molecule. Twenty-four monomers form a hollow spherical complex of octahedral symmetry, with eight trigonal and six square ‘windows’. The sphere has an outer diameter of 120 Å and an inner diameter of 65 Å.


The EMBO Journal | 2000

Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution.

Hongming Wang; David C Boisvert; Kyeong Kyu Kim; Rosalind Kim; Sung-Hou Kim

Fibrillarin is a phylogenetically conserved protein essential for efficient processing of pre‐rRNA through its association with a class of small nucleolar RNAs during ribosomal biogenesis. The protein is the antigen for the autoimmune disease scleroderma. Here we report the crystal structure of the fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. The structure consists of two domains, with a novel fold in the N‐terminal region and a methyltransferase‐like domain in the C‐terminal region. Mapping temperature‐sensitive mutations found in yeast fibrillarin Nop1 to the Methanococcus homologue structure reveals that many of the mutations cluster in the core of the methyltransferase‐like domain.


Biotechnology Letters | 1998

Overexpression of archaeal proteins in Escherichia coli

Rosalind Kim; Steve J. Sandler; Stanley Goldman; Hisao Yokota; Alvin J. Clark; Sung-Hou Kim

Six archaeal proteins containing a high number of Escherichia coli rare codons in their genes were not well expressed in E. coli. These genes showed a five to twenty-fold increase in production when expressed in the presence of a plasmid harboring and expressing the argU and ileX genes encoding rare tRNAs (tRNA arg(de)AGA/AGG and tRNA ile(de)AUA.


Structure | 2001

Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 A resolution.

Weiru Wang; Rosalind Kim; Jaru Jancarik; Hisao Yokota; Sung-Hou Kim

BACKGROUND D-Serine is a co-agonist of the N-methyl-D-aspartate subtype of glutamate receptors, a major neurotransmitter receptor family in mammalian nervous systems. D-Serine is converted from L-serine, 90% of which is the product of the enzyme phosphoserine phosphatase (PSP). PSP from M. jannaschii (MJ) shares significant sequence homology with human PSP. PSPs and P-type ATPases are members of the haloacid dehalogenase (HAD)-like hydrolase family, and all members share three conserved sequence motifs. PSP and P-type ATPases utilize a common mechanism that involves Mg(2+)-dependent phosphorylation and autodephosphorylation at an aspartyl side chain in the active site. The strong resemblance in sequence and mechanism implies structural similarity among these enzymes. RESULTS The PSP crystal structure resembles the NAD(P) binding Rossmann fold with a large insertion of a four-helix-bundle domain and a beta hairpin. Three known conserved sequence motifs are arranged next to each other in space and outline the active site. A phosphate and a magnesium ion are bound to the active site. The active site is within a closed environment between the core alpha/beta domain and the four-helix-bundle domain. CONCLUSIONS The crystal structure of MJ PSP was determined at 1.8 A resolution. Critical residues were assigned based on the active site structure and ligand binding geometry. The PSP structure is in a closed conformation that may resemble the phosphoserine bound state or the state after autodephosphorylation. Compared to a P-type ATPase (Ca(2+)-ATPase) structure, which is in an open state, this PSP structure appears also to be a good model for the closed conformation of P-type ATPase.


Proceedings of the National Academy of Sciences of the United States of America | 2001

BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase.

Ho Cho; Weiru Wang; Rosalind Kim; Hisao Yokota; Steven M. Damo; Sung-Hou Kim; David E. Wemmer; Sydney Kustu; Dalai Yan

Protein phosphoaspartate bonds play a variety of roles. In response regulator proteins of two-component signal transduction systems, phosphorylation of an aspartate residue is coupled to a change from an inactive to an active conformation. In phosphatases and mutases of the haloacid dehalogenase (HAD) superfamily, phosphoaspartate serves as an intermediate in phosphotransfer reactions, and in P-type ATPases, also members of the HAD family, it serves in the conversion of chemical energy to ion gradients. In each case, lability of the phosphoaspartate linkage has hampered a detailed study of the phosphorylated form. For response regulators, this difficulty was recently overcome with a phosphate analog, BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}, which yields persistent complexes with the active site aspartate of their receiver domains. We now extend the application of this analog to a HAD superfamily member by solving at 1.5-Å resolution the x-ray crystal structure of the complex of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} with phosphoserine phosphatase (PSP) from Methanococcus jannaschii. The structure is comparable to that of a phosphoenzyme intermediate: BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} is bound to Asp-11 with the tetrahedral geometry of a phosphoryl group, is coordinated to Mg2+, and is bound to residues surrounding the active site that are conserved in the HAD superfamily. Comparison of the active sites of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}⋅PSP and BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}⋅CeY, a receiver domain/response regulator, reveals striking similarities that provide insights into the function not only of PSP but also of P-type ATPases. Our results indicate that use of BeF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} for structural studies of proteins that form phosphoaspartate linkages will extend well beyond response regulators.


Acta Crystallographica Section D-biological Crystallography | 2004

Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins

Jarmila Jancarik; Ramona Pufan; Connie Hong; Sung-Hou Kim; Rosalind Kim

One of the most critical steps in the preparation of protein samples for structural studies by X-ray crystallography is to obtain biochemically pure and conformationally homogenous protein samples. Very often, the purified sample does not meet these qualifications and therefore does not crystallize. A screening method, Optimum Solubility Screen, has been developed that consists of two steps. The first step selects a better buffer than that used during purification. 24 different buffers ranging from pH 3 to pH 10 are screened using a vapor-diffusion method and very small amounts of protein. The solubility of the protein is first determined by visual examination using a light microscope and those drops that remain clear after 24 h are further evaluated using dynamic light scattering. If the results from the first step are still not satisfactory, a second step explores a variety of chemical additives in order to improve the monodispersity of the protein sample. In 64% of the cases, crystallization was successful from proteins that had initially shown high levels of aggregation. This screen can be configured to perform in an automated high-throughput mode and can be expanded for additional buffers and additives.


Structure | 2000

Crystal structure of archaeal RNase HII: a homologue of human major RNase H

Luhua Lai; Hisao Yokota; Li-Wei Hung; Rosalind Kim; Sung-Hou Kim

BACKGROUND RNases H are present in all organisms and cleave RNAs in RNA/DNA hybrids. There are two major types of RNases H that have little similarity in sequence, size and specificity. The structure of RNase HI, the smaller enzyme and most abundant in bacteria, has been extensively studied. However, no structural information is available for the larger RNase H, which is most abundant in eukaryotes and archaea. Mammalian RNase H participates in DNA replication, removal of the Okazaki fragments and possibly DNA repair. RESULTS The crystal structure of RNase HII from the hypothermophile Methanococcus jannaschii, which is homologous to mammalian RNase H, was solved using a multiwavelength anomalous dispersion (MAD) phasing method at 2 A resolution. The structure contains two compact domains. Despite the absence of sequence similarity, the large N-terminal domain shares a similar fold with the RNase HI of bacteria. The active site of RNase HII contains three aspartates: Asp7, Asp112 and Asp149. The nucleotide-binding site is located in the cleft between the N-terminal and C-terminal domains. CONCLUSIONS Despite a lack of any detectable similarity in primary structure, RNase HII shares a similar structural domain with RNase HI, suggesting that the two classes of RNases H have a common catalytic mechanism and possibly a common evolutionary origin. The involvement of the unique C-terminal domain in substrate recognition explains the different reaction specificity observed between the two classes of RNase H.


PLOS Biology | 2008

Capturing hammerhead ribozyme structures in action by modulating general base catalysis.

Young In Chi; Monika Martick; Monica Lares; Rosalind Kim; William G. Scott; Sung-Hou Kim

We have obtained precatalytic (enzyme–substrate complex) and postcatalytic (enzyme–product complex) crystal structures of an active full-length hammerhead RNA that cleaves in the crystal. Using the natural satellite tobacco ringspot virus hammerhead RNA sequence, the self-cleavage reaction was modulated by substituting the general base of the ribozyme, G12, with A12, a purine variant with a much lower pKa that does not significantly perturb the ribozymes atomic structure. The active, but slowly cleaving, ribozyme thus permitted isolation of enzyme–substrate and enzyme–product complexes without modifying the nucleophile or leaving group of the cleavage reaction, nor any other aspect of the substrate. The predissociation enzyme-product complex structure reveals RNA and metal ion interactions potentially relevant to transition-state stabilization that are absent in precatalytic structures.


Proceedings of the National Academy of Sciences of the United States of America | 2003

On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii.

Rosalind Kim; Luhua Lai; Hi-Hong Lee; Gang-Won Cheong; Kyeong Kyu Kim; Zheng Wu; Hisao Yokota; Susan Marqusee; Sung-Hou Kim

The small heat-shock protein (sHSP) from Methanococcus jannaschii (Mj HSP16.5) forms a homomeric complex of 24 subunits and has an overall structure of a multiwindowed hollow sphere with an external diameter of ≈120 Å and an internal diameter of ≈65 Å with six square “windows” of ≈17 Å across and eight triangular windows of ≈30 Å across. This sHSP has been known to protect other proteins from thermal denaturation. Using purified single-chain monellin as a substrate and a series of methods such as protease digestion, antibody binding, and electron microscopy, we show that the substrates bind to Mj HSP16.5 at a high temperature (80°C) on the outside surface of the sphere and are prevented from forming insoluble substrate aggregates in vitro. Circular dichroism studies suggest that a very small, if any, conformational change occurs in sHSP even at 80°C, but substantial conformational changes of the substrate are required for complex formation at 80°C. Furthermore, deletion mutation studies of Mj HSP16.5 suggest that the N-terminal region of the protein has no structural role but may play an important kinetic role in the assembly of the sphere by “preassembly condensation” of multiple monomers before final assembly of the sphere.


Journal of Biochemical and Biophysical Methods | 2003

Expression of soluble recombinant proteins in a cell-free system using a 96-well format

Didier Busso; Rosalind Kim; Sung-Hou Kim

For structural and functional genomics programs, new high-throughput methods to obtain well-expressing and highly soluble proteins are essential. Here, we describe a rapid procedure to express recombinant proteins in an Escherichia coli cell-free system using a 96-well format. The identification of soluble proteins is performed by the Dot Blot procedure using an anti-His tag antibody. The applications and the automation of this method are described.

Collaboration


Dive into the Rosalind Kim's collaboration.

Top Co-Authors

Avatar

Sung-Hou Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Hisao Yokota

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jaru Jancarik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Adams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Didier Busso

University of California

View shared research outputs
Top Co-Authors

Avatar

Shengfeng Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Yun Lou

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Natalia Oganesyan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ramona Pufan

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge