Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosalind M. Harding is active.

Publication


Featured researches published by Rosalind M. Harding.


Fems Microbiology Reviews | 2009

Genomic islands: tools of bacterial horizontal gene transfer and evolution

Mario Juhas; Jan Roelof van der Meer; Muriel Gaillard; Rosalind M. Harding; Derek W. Hood; Derrick W. Crook

Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs’, as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.


Journal of Clinical Microbiology | 2003

Multilocus Sequence Typing System for Group B Streptococcus

Nicola Jones; John F. Bohnsack; Shinji Takahashi; Karen A. Oliver; Man Suen Chan; Frank Kunst; Philippe Glaser; Christophe Rusniok; Derrick W. Crook; Rosalind M. Harding; Naiel Bisharat; Brian G. Spratt

ABSTRACT A multilocus sequence typing (MLST) system was developed for group B streptococcus (GBS). The system was used to characterize a collection (n = 152) of globally and ecologically diverse human strains of GBS that included representatives of capsular serotypes Ia, Ib, II, III, V, VI, and VIII. Fragments (459 to 519 bp) of seven housekeeping genes were amplified by PCR for each strain and sequenced. The combination of alleles at the seven loci provided an allelic profile or sequence type (ST) for each strain. A subset of the strains were characterized by restriction digest patterning, and these results were highly congruent with those obtained with MLST. There were 29 STs, but 66% of isolates were assigned to four major STs. ST-1 and ST-19 were significantly associated with asymptomatic carriage, whereas ST-23 included both carried and invasive strains. All 44 isolates of ST-17 were serotype III clones, and this ST appeared to define a homogeneous clone that was strongly associated with neonatal invasive infections. The finding that isolates with different capsular serotypes had the same ST suggests that recombination occurs at the capsular locus. A web site for GBS MLST was set up and can be accessed at http://sagalactiae.mlst.net. The GBS MLST system offers investigators a valuable typing tool that will promote further investigation of the population biology of this organism.


The New England Journal of Medicine | 2013

Diverse sources of C. difficile infection identified on whole-genome sequencing.

David W. Eyre; Madeleine Cule; Daniel J. Wilson; David Griffiths; Alison Vaughan; Lily O'Connor; Camilla L. C. Ip; Tanya Golubchik; Elizabeth M. Batty; John Finney; David H. Wyllie; Xavier Didelot; Paolo Piazza; Rory Bowden; Kate E. Dingle; Rosalind M. Harding; Derrick W. Crook; Mark H. Wilcox; Tim Peto; A. S. Walker

BACKGROUND It has been thought that Clostridium difficile infection is transmitted predominantly within health care settings. However, endemic spread has hampered identification of precise sources of infection and the assessment of the efficacy of interventions. METHODS From September 2007 through March 2011, we performed whole-genome sequencing on isolates obtained from all symptomatic patients with C. difficile infection identified in health care settings or in the community in Oxfordshire, United Kingdom. We compared single-nucleotide variants (SNVs) between the isolates, using C. difficile evolution rates estimated on the basis of the first and last samples obtained from each of 145 patients, with 0 to 2 SNVs expected between transmitted isolates obtained less than 124 days apart, on the basis of a 95% prediction interval. We then identified plausible epidemiologic links among genetically related cases from data on hospital admissions and community location. RESULTS Of 1250 C. difficile cases that were evaluated, 1223 (98%) were successfully sequenced. In a comparison of 957 samples obtained from April 2008 through March 2011 with those obtained from September 2007 onward, a total of 333 isolates (35%) had no more than 2 SNVs from at least 1 earlier case, and 428 isolates (45%) had more than 10 SNVs from all previous cases. Reductions in incidence over time were similar in the two groups, a finding that suggests an effect of interventions targeting the transition from exposure to disease. Of the 333 patients with no more than 2 SNVs (consistent with transmission), 126 patients (38%) had close hospital contact with another patient, and 120 patients (36%) had no hospital or community contact with another patient. Distinct subtypes of infection continued to be identified throughout the study, which suggests a considerable reservoir of C. difficile. CONCLUSIONS Over a 3-year period, 45% of C. difficile cases in Oxfordshire were genetically distinct from all previous cases. Genetically diverse sources, in addition to symptomatic patients, play a major part in C. difficile transmission. (Funded by the U.K. Clinical Research Collaboration Translational Infection Research Initiative and others.).


Baillière's clinical haematology | 1993

THE POPULATION GENETICS OF THE HAEMOGLOBINOPATHIES

Jonathan Flint; Rosalind M. Harding; Anthony J. Boyce; J. B. Clegg

The haemoglobinopathies are the commonest single gene disorders known, and are so common in some regions of the world that the majority of the population carries at least one genetic abnormality affecting the structure or synthesis of the haemoglobin molecule. The prevalence of the common haemoglobinopathies (the alpha- and beta-thalassaemias, HbS, HbC and HbE) is almost certainly a result of the protection they provide against malaria, as the epidemiological evidence reviewed in this chapter shows. World-wide, the distributions of malaria and the common haemoglobinopathies largely overlap, and micro-epidemiological surveys have confirmed the close relationship between the disorders. However, there are complications to this picture which appear to undermine the malaria hypothesis. First, in some areas, malaria and haemoglobinopathies are not coincident. Second, the malaria hypothesis does not easily explain why no two regions of the world have the same haemoglobinopathy or combination of haemoglobinopathies. The majority of mutations have arisen only once and are regionally specific. By using molecular characterization of mutations and the analysis of haplotypes on haemoglobinopathy-bearing chromosomes it is possible to show how a combination of selection by malaria, genetic drift and population movements can explain the first complication. In order to explain the second, we have argued that malaria selection has operated relatively recently on human populations (within the last 5000 years). The present distribution is then seen as the result of selection elevating sporadic mutations in local populations. In the absence of sufficient gene flow to spread all mutations to all populations, the consequence is a patchwork distribution of haemoglobinopathies. Given time, we would expect the mutations that protect and do not compromise the health of their carriers to become widely disseminated, but it is likely that human intervention will alter this process of natural selection.


American Journal of Human Genetics | 2000

Evidence for variable selective pressures at MC1R.

Rosalind M. Harding; Eugene Healy; Amanda J. Ray; Nichola S. Ellis; Carol Todd; Craig Dixon; Antti Sajantila; Ian J. Jackson; Mark A. Birch-Machin; Jonathan L. Rees

It is widely assumed that genes that influence variation in skin and hair pigmentation are under selection. To date, the melanocortin 1 receptor (MC1R) is the only gene identified that explains substantial phenotypic variance in human pigmentation. Here we investigate MC1R polymorphism in several populations, for evidence of selection. We conclude that MC1R is under strong functional constraint in Africa, where any diversion from eumelanin production (black pigmentation) appears to be evolutionarily deleterious. Although many of the MC1R amino acid variants observed in non-African populations do affect MC1R function and contribute to high levels of MC1R diversity in Europeans, we found no evidence, in either the magnitude or the patterns of diversity, for its enhancement by selection; rather, our analyses show that levels of MC1R polymorphism simply reflect neutral expectations under relaxation of strong functional constraint outside Africa.


Journal of Clinical Microbiology | 2010

Multilocus Sequence Typing of Clostridium difficile

David Griffiths; Warren N. Fawley; Melina Kachrimanidou; Rory Bowden; Derrick W. Crook; Rowena Fung; Tanya Golubchik; Rosalind M. Harding; Katie Jeffery; Keith A. Jolley; Richard Kirton; Tim Peto; Gareth Rees; Nicole Stoesser; Alison Vaughan; A. Sarah Walker; Bernadette C. Young; Mark H. Wilcox; Kate E. Dingle

ABSTRACT A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/ ) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease

Bernadette C. Young; Tanya Golubchik; Elizabeth M. Batty; Rowena Fung; Hanna Larner-Svensson; Antonina A. Votintseva; Ruth R. Miller; Heather Godwin; Kyle Knox; Richard G. Everitt; Zamin Iqbal; Andrew J. Rimmer; Madeleine Cule; Camilla L. C. Ip; Xavier Didelot; Rosalind M. Harding; Peter Donnelly; Tim Peto; Derrick W. Crook; Rory Bowden; Daniel J. Wilson

Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staphylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. However, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with methicillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a premature stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of protein-truncating mutations are highly unusual. Our results demonstrate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.


Applied and Environmental Microbiology | 2003

Genetic Diversity of Campylobacter jejuni Isolates from Farm Animals and the Farm Environment

Frances M. Colles; Keith Jones; Rosalind M. Harding; Martin C. J. Maiden

ABSTRACT The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.


PLOS Medicine | 2012

Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing.

A. Sarah Walker; David W. Eyre; David H. Wyllie; Kate E. Dingle; Rosalind M. Harding; Lily O'Connor; David Griffiths; Ali Vaughan; John Finney; Mark H. Wilcox; Derrick W. Crook; Tim Peto

A population-based study in Oxfordshire (UK) hospitals by Sarah Walker and colleagues finds that in an endemic setting with good infection control, ward-based contact cannot account for most new cases of Clostridium difficile infection.


Journal of Clinical Microbiology | 2004

Hyperinvasive Neonatal Group B Streptococcus Has Arisen from a Bovine Ancestor

Naiel Bisharat; Derrick W. Crook; James A. Leigh; Rosalind M. Harding; Phil N. Ward; Tracey J. Coffey; Martin C. J. Maiden; Tim Peto; Nicola Jones

ABSTRACT The genetic relatedness and evolutionary relationships between group B streptococcus (GBS) isolates from humans and those from bovines were investigated by phylogenetic analysis of multilocus sequence typing data. The collection of isolates consisted of 111 GBS isolates from cows with mastitis and a diverse global collection of GBS isolates from patients with invasive disease (n = 83) and carriers (n = 69). Cluster analysis showed that the majority of the bovine isolates (93%) grouped into one phylogenetic cluster. The human isolates showed greater diversity and clustered separately from the bovine population. However, the homogeneous human sequence type 17 (ST-17) complex, known to be significantly associated with invasive neonatal disease, was the only human lineage found to be clustered within the bovine population and was distinct from all the other human lineages. Split decomposition analysis revealed that the human isolate ST-17 complex, the major hyperinvasive neonatal clone, has recently arisen from a bovine lineage.

Collaboration


Dive into the Rosalind M. Harding's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Peto

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

J. B. Clegg

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rory Bowden

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin A. McKenzie

University of the West Indies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge