Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosanna Inzitari is active.

Publication


Featured researches published by Rosanna Inzitari.


Journal of Separation Science | 2008

Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us

Irene Messana; Rosanna Inzitari; Chiara Fanali; Tiziana Cabras; Massimo Castagnola

This review briefly depicts several salient points of the current status of knowledge on salivary peptidoma. It outlines the intrinsic difficulties in its characterization connected to different factors of variability, such as: i) the high genetic polymorphisms, complicated by individual insertions/deletions and alternative splicing; ii) complex post-translational maturations comprehending different proteolytic cleavages, glycosylation, phosphorylation and sulfation processes; iii) physiological variations and different contributions to the whole. Moreover, several technological and analytical problems and pitfalls that had to be surmounted during our studies focussed on the extensive qualitative and quantitative characterization of salivary peptidoma and mainly based on LC-MS analyses of intact naturally occurring peptides are here described. The hope is that the information provided might be helpful to other groups engaged on the analysis of saliva or other body fluids for clinical applications.


Molecular & Cellular Proteomics | 2008

Trafficking and Postsecretory Events Responsible for the Formation of Secreted Human Salivary Peptides A Proteomics Approach

Irene Messana; Tiziana Cabras; Elisabetta Pisano; Maria Teresa Sanna; Alessandra Olianas; Barbara Manconi; Mariagiuseppina Pellegrini; Gaetano Paludetti; Emanuele Scarano; Antonella Fiorita; Stefania Agostino; Contucci Am; Lea Calò; Pasqualina Maria Picciotti; Armando Manni; Anders Bennick; Alberto Vitali; Chiara Fanali; Rosanna Inzitari; Massimo Castagnola

To elucidate the localization of post-translational modifications of different classes of human salivary proteins and peptides (acidic and basic proline-rich proteins (PRPs), Histatins, Statherin, P-B peptide, and “S type” Cystatins) a comparative reversed phase HPLC-ESI-MS analysis on intact proteins of enriched granule preparations from parotid and submandibular glands as well as parotid, submandibular/sublingual (Sm/Sl), and whole saliva was performed. The main results of this study indicate the following. (i) Phosphorylation of all salivary peptides, sulfation of Histatin 1, proteolytic cleavages of acidic and precursor basic PRPs occur before granule storage. (ii) In agreement with previous studies, basic PRPs are secreted by the parotid gland only, whereas all isoforms of acidic PRPs (aPRPs) are secreted by both parotid and Sm/Sl glands. (iii) Phosphorylation levels of aPRPs, Histatin 1, and Statherin are higher in the parotid gland, whereas the extent of cleavage of aPRP is higher in Sm/Sl glands. (iv) O-Sulfation of tyrosines of Histatin 1 is a post-translational modification specific for the submandibular gland. (v) The concentration of Histatin 3, Histatin 5, and Histatin 6, but not Histatin 1, is higher in parotid saliva. (vi) Histatin 3 is submitted to the first proteolytic cleavage (generating Histatins 6 and 5) during granule maturation, and it occurs to the same relative extent in both glands. (vii) The proteolytic cleavages of Histatin 5 and 6, generating a cascade of Histatin 3 fragments, take place after granule secretion and are more extensive in parotid secretion. (viii) Basic PRPs are cleaved in the oral cavity by unknown peptidases, generating various small proline-rich peptides. (ix) C-terminal removal from Statherin is more extensive in parotid saliva. (x) P-B peptide is secreted by both glands, and its relative quantity is higher in submandibular/sublingual secretion. (xi) In agreement with previous studies, S type Cystatins are mainly the product of Sm/Sl glands.


Molecular & Cellular Proteomics | 2011

The Surprising Composition of the Salivary Proteome of Preterm Human Newborn

Massimo Castagnola; Rosanna Inzitari; Chiara Fanali; Federica Iavarone; Alberto Vitali; Claudia Desiderio; Giovanni Vento; Chiara Tirone; Costantino Romagnoli; Tiziana Cabras; Barbara Manconi; Maria Teresa Sanna; R Boi; Elisabetta Pisano; Alessandra Olianas; Mariagiuseppina Pellegrini; Sonia Nemolato; Claus W. Heizmann; Gavino Faa; Irene Messana

Saliva is a body fluid of a unique composition devoted to protect the mouth cavity and the digestive tract. Our high performance liquid chromatography (HPLC)-electrospray ionization-MS analysis of the acidic soluble fraction of saliva from preterm human newborn surprisingly revealed more than 40 protein masses often undetected in adult saliva. We were able to identify the following proteins: stefin A and stefin B, S100A7 (two isoforms), S100A8, S100A9 (four isoforms), S100A11, S100A12, small proline-rich protein 3 (two isoforms), lysozyme C, thymosins β4 and β10, antileukoproteinase, histone H1c, and α and γ globins. The average mass value reported in international data banks was often incongruent with our experimental results mostly because of post-translational modifications of the proteins, e.g. acetylation of the N-terminal residue. A quantitative label-free MS analysis showed protein levels altered in relation to the postconceptional age and suggested coordinate and hierarchical functions for these proteins during development. In summary, this study shows for the first time that analysis of these proteins in saliva of preterm newborns might represent a noninvasive way to obtain precious information of the molecular mechanisms of development of human fetal oral structures.


Molecular & Cellular Proteomics | 2010

Alterations of the salivary secretory peptidome profile in children affected by type 1 diabetes

Tiziana Cabras; Elisabetta Pisano; Andrea Mastinu; Gloria Denotti; Pietro Paolo Pusceddu; Rosanna Inzitari; Chiara Fanali; Sonia Nemolato; Massimo Castagnola; Irene Messana

The acidic soluble fraction of whole saliva of type 1 diabetic children was analyzed by reversed phase (RP)1–HPLC-ESI-MS and compared with that of sex- and age-matched control subjects. Salivary acidic proline-rich phosphoproteins (aPRP), histatins, α-defensins, salivary cystatins, statherin, proline-rich peptide P-B (P-B), beta-thymosins, S100A8 and S100A9*(S100A9* corresponds to S100A9 vairant lacking the first four amino acids), as well some naturally occurring peptides derived from salivary acidic proline-rich phosphoproteins, histatins, statherin, and P-B peptide, were detected and quantified on the basis of the extracted ion current peak area. The level of phosphorylation of salivary acidic proline-rich phosphoproteins, histatin-1 (Hst-1), statherin and S100A9* and the percentage of truncated forms of salivary acidic proline-rich phosphoproteins was also determined in the two groups. The study revealed that statherin, proline-rich peptide P-B, P-C peptide, and histatins, were significantly less concentrated in saliva of diabetic subjects than in controls, while concentration of α-defensins 1, 2 and 4 and S100A9* was higher. The low concentration of P-C peptide was paralleled by high levels of some of its fragments. On the whole, the study highlighted the severe impairment of the repertoire of peptides involved in the safeguard of the oral cavity in children who have diabetes, as well as an higher concentration of the proinflammatory mediator S100A9* with respect to healthy children.


Journal of Proteome Research | 2008

Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders.

Massimo Castagnola; Irene Messana; Rosanna Inzitari; Chiara Fanali; Tiziana Cabras; Alessandra Morelli; Anna Maria Pecoraro; Giovanni Neri; Maria Giulia Torrioli; Fiorella Gurrieri

RP-HPLC-ESI-MS profile of naturally occurring salivary peptides of subjects with autistic spectrum disorder [ASD; N = 27:12 with diagnosis of autism, 1 with diagnosis of Asperger, 14 with diagnosis of pervasive developmental disorders not otherwise specified (PDD-NOS)] was compared to that of age-matched controls with the goal of identifying differences that could turn out to become hallmarks of at least a subgroup of ASD individuals. Phosphorylation level of four specific salivary phospho-peptides, namely statherin, histatin 1 (both, p < 0.0001) and acidic proline-rich proteins (both entire and truncated isoforms) (p < 0.005) was found significantly lower in autistic patients, with hypo-phosphorylation of at least one peptide observed in 18 ASD subjects (66%). Developmental scale assessment (Griffith or WISC-R) carried out on 14 ASD subjects highlighted a normal to borderline cognitive development in 10 of them, all included in the hypo-phosphorylated group. Phosphorylation of salivary peptides involves a Golgi casein kinase common to many organs and tissues, CNS included, whose expression seems to be synchronized during fetal development. Hypo-phosphorylation of salivary peptides suggests potential asynchronies in the phosphorylation of other secretory proteins, which could be relevant in CNS development either during embryonic development or in early infancy. These results suggest that analysis of salivary phospho-peptides might help to discriminate a considerable subgroup of ASD patients.


Journal of Proteome Research | 2009

Age-dependent modifications of the human salivary secretory protein complex

Tiziana Cabras; Elisabetta Pisano; R Boi; Alessandra Olianas; Barbara Manconi; Rosanna Inzitari; Chiara Fanali; Bruno Giardina; Massimo Castagnola; Irene Messana

Physiological variability of the naturally occurring, human salivary secretory peptidome was studied as a function of age. The qualitative and quantitative changes occurring in the secretion of proteins/peptides specific to the oral cavity (i.e., basic salivary proline-rich proteins, salivary acidic proline-rich phosphoproteins, statherin, proline-rich peptide P-B, salivary cystatins, and histatins) were investigated by high-performance liquid chromatography-electrospray ionization-mass spectrometry in 67 subjects aged between 3 and 44 years. Subjects were divided into five age groups: group A, 8 donors, 3-5 years; group B, 11 donors, 6-9 years; group C, 20 donors, 10-12 years; group D, 15 donors, 13-17 years; group E, 13 donors, 24-44 years. Basic salivary proline-rich proteins, almost undetectable in the 3-5 and 6-9 years groups, reached salivary levels comparable to that of adults (24-44 years) around puberty. Levels of peptide P-D, basic peptide P-F, peptide P-H, peptide P-J (a new basic salivary proline-rich protein characterized in this study), and basic proline-rich peptide IB-1 were significantly higher in the 10-12-year-old group than in the 3-5-year-old group, whereas the increase of proline-rich peptide II-2 was significant only after the age of 12 years. The concentration of salivary acidic proline-rich phosphoproteins, histatin-3 1/24, histatin-3 1/25, and monophosphorylated and diphosphorylated cystatin S showed a minimum in the 6-9-year-old group. Finally, the histatin-1 concentration was significantly higher in the youngest subjects (3-5 years) than in the other groups.


Journal of Separation Science | 2009

HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins beta(4) and beta(10).

Rosanna Inzitari; Tiziana Cabras; Elisabetta Pisano; Chiara Fanali; Barbara Manconi; Emanuele Scarano; Antonella Fiorita; Gaetano Paludetti; Armando Manni; Sonia Nemolato; Gavino Faa; Massimo Castagnola; Irene Messana

Thymosin beta(4) (Tbeta(4)), its sulfoxide, and thymosin beta(10 )(Tbeta(10)) were detected in human saliva and identified by different strategies based on RP HPLC coupled to electrospray multidimensional IT MS. Tbeta(4 )was almost always detected in whole saliva, its sulfoxide sporadically, Tbeta(10) rarely. Tbeta(4) was undetectable in parotid saliva and less concentrated in submandibular/sublingual saliva than in whole saliva. Analysis of gingival crevicular fluid revealed high relative amounts of Tbeta(4), Tbeta(4) sulfoxide, and Tbeta(10) in all the samples. Tbeta(4) mean concentration was 200 times higher in crevicular fluid (20 micromol/L, N = 9) than in whole saliva (0.1 micromol/L, N = 9). Crevicular fluid concentration of Tbeta(4 )(ca. 5% represented by its sulfoxide) and beta(10 )significantly correlated (r = 0.856; N = 9), and their ratio was about 5. A significant correlation was also observed between Tbeta(4 )concentrations in whole saliva and gingival crevicular fluid (r = 0.738; N = 9). Immunohistochemical analysis of the major salivary glands showed that immunoreactivity for Tbeta(4) is restricted to ductal cells, with minor degree of focal positivity in some acinar cells. On the whole, results indicate that gingival sulcus is a main, although not the sole, source for oral Tbeta(4 )and Tbeta(10).


PLOS ONE | 2009

Thymosin β4 and β10 Levels in Pre-Term Newborn Oral Cavity and Foetal Salivary Glands Evidence a Switch of Secretion during Foetal Development

Sonia Nemolato; Irene Messana; Tiziana Cabras; Barbara Manconi; Rosanna Inzitari; Chiara Fanali; Giovanni Vento; Chiara Tirone; Costantino Romagnoli; Alessandro Riva; Daniela Fanni; Eliana Di Felice; Gavino Faa; Massimo Castagnola

Background Thymosin β4, its sulfoxide, and thymosin β10 were detected in whole saliva of human pre-term newborns by reversed-phase high performance chromatography coupled to electrospray ion-trap mass spectrometry. Methodology/Principal Findings Despite high inter-individual variability, concentration of β-thymosins increases with an inversely proportional trend to postmenstrual age (PMA: gestational age plus chronological age after birth) reaching a value more than twenty times higher than in adult whole saliva at 190 days (27 weeks) of PMA (thymosin β4 concentration: more than 2.0 µmol/L versus 0.1 µmol/L). On the other hand, the ratio between thymosin β4 and thymosin β10 exhibits a constant value of about 4 along all the range of PMA (190–550 days of PMA) examined. In order to investigate thymosin β4 origin and to better establish the trend of its production as a function of gestational age (GA), immunohistochemical analysis of major and minor salivary glands of different pre-term fetuses were carried out, starting from 84 days (12 weeks) of gestational age. Reactive granules were seen in all glands with a maximum of expression around 140–150 days of GA, even though with high inter- and intra-individual variability. In infants and adults reactive granules in acinar cells were not observed, but just a diffuse cytoplasmatic staining in ductal cells. Significance This study outlines for the first time that salivary glands during foetal life express and secrete peptides such as β-thymosins probably involved in the development of the oral cavity and its annexes. The secretion increases from about 12 weeks till to about 21 weeks of GA, subsequently it decreases, almost disappearing in the period of expected date of delivery, when the gland switches towards the secretion of adult specific salivary peptides. The switch observed may be an example of further secretion switches involving other exocrine and endocrine glands during foetal development.


Autoimmunity Reviews | 2010

Proteomic approaches to Sjögren's syndrome: A clue to interpret the pathophysiology and organ involvement of the disease

Gianfranco Ferraccioli; Maria De Santis; Giusy Peluso; Rosanna Inzitari; Chiara Fanali; Silvia Laura Bosello; Federica Iavarone; Massimo Castagnola

Sjögrens syndrome (SS) is a chronic, inflammatory, autoimmune disease characterized by lymphocytic infiltration of the exocrine glands leading to qualitatively altered and diminished or absent salivary and lachrymal secretion, and by marked B-cell hyperreactivity. Many efforts have been made to define a panel of salivary and lachrymal markers helpful to design diagnostic tests able to replace blood tests and tissue biopsies for the diagnosis of primary and secondary SS. Several proteomic-based studies have indicated that a number of proteins and peptides can be considered SS biomarkers, being 2-3-fold up- or down-regulated compared to normal subject or having an exclusive presence in the saliva or tears of SS patients. Unfortunately, several factors make it difficult to define a comprehensive salivary and lachrymal panel of markers of SS, as the lack of a comprehensive proteomic analysis of human tears and saliva of healthy subjects, the lack of uniform protocols to collect and treat these samples, and the high grade of posttranslational modification of the proteins in these fluids.


Childs Nervous System | 2010

The role of inflammation in the genesis of the cystic component of craniopharyngiomas

Benedetta Ludovica Pettorini; Rosanna Inzitari; Luca Massimi; Gianpiero Tamburrini; Massimo Caldarelli; Chiara Fanali; Tiziana Cabras; Irene Messana; Massimo Castagnola; Concezio Di Rocco

BackgroundCraniopharyngioma accounts for 5–10% of childhood tumors and, despite of the benign histological features, its clinical course can be malignant because of critical anatomical relationships with neural and vascular structures and the possible morbidity associated to resection. Only a few studies have addressed the molecular characterization of the cyst fluid so far and the mechanisms of action of intracystic agents are not clearly understood yet.MethodsThe acidic soluble proteins contained in the cystic fluid of six patients with cystic craniopharyngioma, three of them treated with intratumoral interferon-α, were analyzed. A high performance liquid chromatography electrospray ionization mass spectrometry analysis was performed.FindingsThe antimicrobial peptides α-defensins 1–3 relevant for innate immunity were detected in the cystic fluid before the intratumoral treatment. Amount of peptides significantly decreased in cystic fluid during pharmacological treatment.InterpretationDetection of α-defensins 1–3 excludes that cyst fluid formation can derive from disruption of blood–brain barrier and suggests the involvement of innate immune response in pathology of craniopharyngioma cyst formation. The reduction of α-defensins could derive both from direct antitumoral effect of interferon-α on squamous epithelial cells of craniopharyngioma cyst and from its immuno-modulatory effects on the recruitment of cells of innate immune systems. Interestingly, the clinical patient outcome well correlates with the gradual reduction of α-defensins 1–3 amount. Additional studies will be necessary to establish the role of these molecules in the pathogenesis of craniopharyngioma, and further investigations will be necessary to confirm the efficacy of the antitumoral activity of interferon-α.

Collaboration


Dive into the Rosanna Inzitari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Messana

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Massimo Castagnola

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Chiara Fanali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Alberto Vitali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Massimo Castagnola

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuele Scarano

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Fiorita

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge