Rosanna La Rocca
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosanna La Rocca.
Journal of Immunology | 2013
Rossana Tallerico; Matilde Todaro; Simone Di Franco; Cristina Maccalli; Cinzia Garofalo; Rosa Sottile; Camillo Palmieri; Luca Tirinato; Pradeepa Pangigadde; Rosanna La Rocca; Ofer Mandelboim; Giorgio Stassi; Enzo Di Fabrizio; Giorgio Parmiani; Alessandro Moretta; Francesco Dieli; Klas Kärre; Ennio Carbone
Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the “differentiated” cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma–derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the “differentiated” tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors.
Stem Cells | 2015
Luca Tirinato; Carlo Liberale; Simone Di Franco; Patrizio Candeloro; Antonina Benfante; Rosanna La Rocca; Lisette Potze; Roberto Marotta; Roberta Ruffilli; Vijayakumar P. Rajamanickam; Mario Malerba; Francesco De Angelis; Andrea Falqui; Ennio Carbone; Matilde Todaro; Jan Paul Medema; Giorgio Stassi; Enzo Di Fabrizio
The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label‐free Raman spectroscopy and it directly correlates with well‐accepted CR‐CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR‐CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR‐CSCs. Stem Cells 2015;33:35–44
ACS Applied Materials & Interfaces | 2012
Francesco Gentile; Rosanna La Rocca; Giovanni Marinaro; Annalisa Nicastri; Andrea Toma; Francesco Paonessa; Gheorghe Cojoc; Carlo Liberale; Fabio Benfenati; Enzo Di Fabrizio; Paolo Decuzzi
Porous silicon (PSi) is a promising material in several biomedical applications because of its biocompatibility and biodegradability. Despite the plethora of studies focusing on the interaction of cells with micrometer and submicro geometrical features, limited information is available on the response of cells to substrates with a quasi-regular distribution of nanoscopic pores. Here, the behavior of four different cell types is analyzed on two mesoporous (MeP) silicon substrates, with an average pore size of ∼5 (MeP1) and ∼20 nm (MeP2), respectively. On both MeP substrates, cells are observed to spread and adhere in a larger number as compared to flat silicon wafers. At all considered time points, the surface density of the adhering cells nd is larger on the PSi substrate with the smaller average pore size (MeP1). At 60 h, nd is from ∼1.5 to 5 times larger on MeP1 than on MeP2 substrates, depending on the cell type. The higher rates of proliferation are observed for the two neuronal cell types, the mouse neuroblastoma cells (N2A) and the immortalized human cortical neuronal cells (HCN1A). It is speculated that the higher adhesion on MeP1 could be attributed to a preferential matching of the substrate topography with the recently observed multiscale molecular architecture of focal adhesions. These results have implications in the rational development of PSi substrates for supporting cell adhesion and controlling drug release in implants and scaffolds for tissue engineering applications.
Advanced Materials | 2015
Gabriele C. Messina; Michele Dipalo; Rosanna La Rocca; Pierfrancesco Zilio; Valeria Caprettini; Remo Proietti Zaccaria; Andrea Toma; Francesco Tantussi; Luca Berdondini; Francesco De Angelis
A Universal plasmonic/microfluidic platform for spatial and temporal controlled intracellular delivery is described. The system can inject/transfect the desired amount of molecules with an efficacy close to 100%. Moreover, it is highly scalable from single cells to large ensembles without administering the molecules to an extracellular bath. The latter enables quantitative control over the amount of injected molecules.
Small | 2015
Rosanna La Rocca; Gabriele C. Messina; Michele Dipalo; Victoria Shalabaeva; Francesco De Angelis
Out-of-plane plasmonic nanoantennas protruding from the substrate are exploited to perform very sensitive surface enhanced Raman scattering analysis of living cells. Cells cultured on three-dimensional surfaces exhibit tight adhesion with nanoantenna tips where the plasmonic hot-spot resides. This fact provides observable cell adhesion sites combined with high plasmonic enhancement, resulting in an ideal system for Raman investigation of cell membranes.
Journal of Immunology | 2009
Rosanna La Rocca; Mariateresa Fulciniti; Tadepally Lakshmikanth; Maria Mesuraca; Talib Hassan Ali; Valerio Mazzei; Nicola Amodio; Lucio Catalano; Bruno Rotoli; Ouathek Ouerfelli; Michele Grieco; Elio Gulletta; Heather M. Bond; Giovanni Morrone; Soldano Ferrone; Ennio Carbone
Early hematopoietic zinc finger/zinc finger protein 521 (EHZF/ZNF521) is a novel zinc finger protein expressed in hematopoietic stem and progenitor cells and is down-regulated during their differentiation. Its transcript is also abundant in some hematopoietic malignancies. Analysis of the changes in the antigenic profile of cells transfected with EHZF cDNA revealed up-regulation of HLA class I cell surface expression. This phenotypic change was associated with an increased level of HLA class I H chain, in absence of detectable changes in the expression of other Ag-processing machinery components. Enhanced resistance of target cells to NK cell-mediated cytotoxicity was induced by enforced expression of EHZF in the cervical carcinoma cell line HeLa and in the B lymphoblastoid cell line IM9. Preincubation of transfected cells with HLA class I Ag-specific mAb restored target cell susceptibility to NK cell-mediated lysis, indicating a specific role for HLA class I Ag up-regulation in the NK resistance induced by EHZF. A potential clinical significance of these findings is further suggested by the inverse correlation between EHZF and MHC class I expression levels, and autologous NK susceptibility of freshly explanted multiple myeloma cells.
Small | 2012
Gerardo Perozziello; Rosanna La Rocca; Gheorghe Cojoc; Carlo Liberale; Natalia Malara; Giuseppina De Simone; Patrizio Candeloro; Andrea Anichini; Luca Tirinato; Francesco Gentile; Maria Laura Coluccio; Ennio Carbone; Enzo Di Fabrizio
This study aims to adoptively reduce the major histocompatibility complex class I (MHC-I) molecule surface expression of cancer cells by exposure to microfluid shear stress and a monoclonal antibody. A microfluidic system is developed and tumor cells are injected at different flow rates. The bottom surface of the microfluidic system is biofunctionalized with antibodies (W6/32) specific for the MHC-I molecules with a simple method based on microfluidic protocols. The antibodies promote binding between the bottom surface and the MHC-I molecules on the tumor cell membrane. The cells are injected at an optimized flow rate, then roll on the bottom surface and are subjected to shear stress. The stress is localized and enhanced on the part of the membrane where MHC-I proteins are expressed, since they stick to the antibodies of the system. The localized stress allows a stripping effect and consequent reduction of the MHC-I expression. It is shown that it is possible to specifically treat and recover eukaryotic cells without damaging the biological samples. MHC-I molecule expression on treated and control cell surfaces is measured on tumor and healthy cells. After the cell rolling treatment a clear reduction of MHC-I levels on the tumor cell membrane is observed, whereas no changes are observed on healthy cells (monocytes). The MHC-I reduction is investigated and the possibility that the developed system could induce a loss of these molecules from the tumor cell surface is addressed. The percentage of living tumor cells (viability) that remain after the treatment is measured. The changes induced by the microfluidic system are analyzed by fluorescence-activated cell sorting and confocal microscopy. Cytotoxicity tests show a relevant increased susceptibility of natural killer (NK) cells on microchip-treated tumor cells.
Journal of Biomedical Optics | 2010
Gobind Das; Rosanna La Rocca; Tadepally Lakshmikanth; Francesco Gentile; Rossana Tallerico; Lia Zambetti; James Devitt; Patrizio Candeloro; Francesco De Angelis; Ennio Carbone; Enzo Di Fabrizio
Human leukocyte antigen (HLA) class I molecules are formed by three immunoglobulin-like domains (alpha1, alpha2, and alpha3) once folded by peptide and beta(2)-microglobulin show the presence of two alpha-helix streams and one beta-sheet limiting the pocket for the antigenic peptide. The loss of HLA class I expression in tumors and virus-infected cells, on one hand, prevents T cell recognition, while on the other hand, it leads to natural killer (NK) cell mediated cytotoxicity. We propose the possibility of using Raman spectroscopy to measure the relative expression of HLA class I molecules at the single-cell level. Raman spectra are recorded for three cell lines (K562, T2, and T3) and monomers (HLA class I folded, unfolded and peptide+beta(2)-microlobulin refolded) using 830 nm laser line. Our data are consistent with the hypothesis that in the Raman spectra, ranging from 1600 to 1800 cm(-1), the intensity variation of cells associated with HLA class I molecules could be measured.
Integrative Biology | 2015
Giovanni Marinaro; Rosanna La Rocca; Andrea Toma; Marianna Barberio; Laura Cancedda; Enzo Di Fabrizio; Paolo Decuzzi; Francesco Gentile
The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized.
Electrophoresis | 2013
Gerardo Perozziello; Giuseppina De Simone; Natalia Malara; Rosanna La Rocca; Rossana Tallerico; Rossella Catalano; Francesca Pardeo; Patrizio Candeloro; Giovanni Cuda; Ennio Carbone; Enzo Di Fabrizio
In this study, we propose a fast, simple method to biofunctionalise microfluidic systems for cellomic investigations based on micro‐fluidic protocols. Many available processes either require expensive and time‐consuming protocols or are incompatible with the fabrication of microfluidic systems. Our method differs from the existing since it is applicable to an assembled system, uses few microlitres of reagents and it is based on the use of microbeads. The microbeads have specific surface moieties to link the biomolecules and couple cell receptors. Furthermore, the microbeads serve as arm spacer and offer the benefit of the multi‐valent interaction. Microfluidics was adapted together with topology and biochemistry surface modifications to offer the microenvironment for cellomic studies. Based on this principle, we exploit the streptavidin–biotin interaction to couple antibodies to the biofunctionalised microfluidic environment within 5 h using 200 μL of reagents and biomolecules. We selected the antibodies able to form complexes with the MHC class I (MHC‐I) molecules present on the cell membrane and involved in the immune surveillance. To test the microfluidic system, tumour cell lines (RMA) were rolled across the coupled antibodies to recognise and strip MHC‐I molecules. As result, we show that cell rolling performed inside a microfluidic chamber functionalised with beads and the opportune antibody facilitate the removal of MHC class I molecules. We showed that the level of median fluorescent intensity of the MHC‐I molecules is 300 for cells treated in a not biofunctionalised surface. It decreased to 275 for cells treated in a flat biofunctionalised surface and to 250 for cells treated on a surface where biofunctionalised microbeads were immobilised. The cells with reduced expression of MHC‐I molecules showed, after cytotoxicity tests, susceptibility 3.5 times higher than normal cells.