Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosanna Sestito is active.

Publication


Featured researches published by Rosanna Sestito.


The FASEB Journal | 2011

STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation

Rosanna Sestito; Stefania Madonna; Claudia Scarponi; Francesca Cianfarani; Cristina Maria Failla; Andrea Cavani; Giampiero Girolomoni; Cristina Albanesi

IL‐22 has a pathogenetic role in psoriasis, where it is responsible for the altered proliferation and differentiation of keratinocytes and induces inflammatory molecules. The IL‐22‐induced effects are mediated by STAT3, whose activity is proportional to acetylation in lysine (Lys)685 and phosphorylation in tyrosine (Tyr)705. Lys 685 acetylation of STAT3 is inhibited by sirtuin (SIRT)1, a class III deacetylase promoting keratinocyte differentiation. Due to the opposite effects of IL‐22 and SIRT1, we investigated whether IL‐22‐induced effects in keratinocytes could be regulated by SIRT1 through control of STAT3. We found that SIRT1 opposes the IL‐22‐induced STAT3 activity by deacetylating STAT3 and reducing STAT3 Tyr705 phosphorylation. By controlling STAT3, SIRT1 also influences the IL‐22‐induced expression of molecules involved in proliferation and inflammation as well as proliferation and migration processes in cultured keratinocytes. Although SIRT1 levels were similar in keratinocytes of healthy individuals and patients with psoriasis, they were reduced in psoriatic skin lesions, with the lymphokine IFN‐γ inhibiting SIRT1 expression. Concomitantly, IFN‐γ enhanced basal acetylation of STAT3 and its phosphorylation induced by IL‐22. In conclusion, STAT3‐dependent IL‐22 signaling and effects in keratinocytes are negatively regulated by SIRT1. In skin affected by psoriasis, SIRT1 is down‐regulated by IFN‐y, which thus renders psoriatic keratinocytes more prone to respond to IL‐22.—Sestito, R., Madonna, S., Scarponi, C., Cianfarani, F., Failla, C. M., Cavani, A., Girolomoni, G., Albanesi, C. STAT3‐dependent effects of IL‐22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB J. 25, 916–927 (2011). www.fasebj.org


Journal of Immunology | 2010

The IFN-γ–Dependent Suppressor of Cytokine Signaling 1 Promoter Activity Is Positively Regulated by IFN Regulatory Factor-1 and Sp1 but Repressed by Growth Factor Independence-1b and Krüppel-Like Factor-4, and It Is Dysregulated in Psoriatic Keratinocytes

Stefania Madonna; Claudia Scarponi; Rosanna Sestito; Sabatino Pallotta; Andrea Cavani; Cristina Albanesi

Epidermal keratinocytes can counteract the detrimental effects of IFN-γ by inducing the expression of suppressor of cytokine signaling (SOCS)1, which plays an important anti-inflammatory and self-protective role. To date, limited information exists on its expression and regulation in human diseased keratinocytes. In this study, we compared the expression levels of SOCS1 in keratinocytes isolated from skin affected by psoriasis with cells obtained from healthy donors, unveiling that keratinocytes are more prone than healthy cells to upregulate SOCS1 mRNA expression in response to IFN-γ. We explored the regulatory mechanisms involved in socs1 gene transcription, and found that Sp1 and IFN regulatory factor-1 transcription factors are, respectively, responsible for the basal and IFN-γ–induced activity of human socs1 promoter. In parallel, we demonstrated that socs1 promoter is negatively regulated by two transcriptional repressors, namely, growth factor independence-1b and Krüppel-like factor 4, which tightly control SOCS1 transcription on IFN-γ stimulation. Interestingly, although the expression of Sp1 and IFN regulatory factor-1 activators of socs1 promoter is unaltered, growth factor independence-1b and Krüppel-like factor 4 are significantly reduced in psoriatic compared with healthy keratinocytes. This reduction and the consequent unbalanced binding of transcriptional activators and repressors to socs1 promoter after IFN-γ stimulation might be responsible for the enhanced expression of SOCS1 in psoriatic cells. We suggest that SOCS1 exaggerated upregulation in psoriatic keratinocytes could represent a mechanism through which these cells attempt to protect themselves from IFN-γ effects. However, the SOCS1 increased levels in psoriatic keratinocytes are not sufficient to completely inhibit the expression of proinflammatory genes.


Oncotarget | 2016

miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma

Rosanna Sestito; Roberta Cianfrocca; Laura Rosanò; Piera Tocci; Elisa Semprucci; Valeriana Di Castro; Valentina Caprara; Gabriella Ferrandina; Andrea Sacconi; Giovanni Blandino; Anna Bagnato

Drug resistance remains the major clinical barrier to successful treatment in epithelial ovarian carcinoma (EOC) patients, and the evidence of microRNA involvement in drug resistance has been recently emerging. Endothelin-1 (ET-1)/ETA receptor (ETAR) axis is aberrantly activated in chemoresistant EOC cells and elicits pleiotropic effects promoting epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance. However, the relationship between ETAR and miRNA is still unknown. Hence, in this study we evaluated whether dysregulation of miRNA might enhance ETAR expression in sensitive and resistant EOC cells. Based on bioinformatic tools, we selected putative miRNA able to recognize the 3′UTR of ETAR. An inverse correlation was observed between the expression levels of miR-30a and ETAR in both EOC cell lines and tumor samples. miR-30a was found to specifically bind to the 3′UTR of ETAR mRNA, indicating that ETAR is a direct target of miR-30a. Overexpression of miR-30a decreased Akt and mitogen activated protein kinase signaling pathway activation, cell proliferation, invasion, plasticity, EMT marker levels, and vascular endothelial growth factor release. Interestingly, ectopic expression of miR-30a re-sensitized platinum-resistant EOC cells to cisplatinum-induced apoptosis. Consistently, resistant EOC xenografts overexpressing miR-30a resulted in significantly less tumor growth than controls. Together our study provides a new perspective on the regulatory mechanism of ETAR gene. Interestingly, our findings highlight that blockade of ETAR regulatory axis is the mechanism underlying the tumor suppressor function of miR-30a in chemoresistant EOC cells.


Oncogene | 2016

Endothelin A receptor drives invadopodia function and cell motility through the β-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma.

Elisa Semprucci; Piera Tocci; R. Cianfrocca; Rosanna Sestito; Valentina Caprara; M Veglione; V Di Castro; F Spadaro; Gabriella Ferrandina; Anna Bagnato; Laura Rosanò

The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion. This is accomplished by the direct interaction of β-arr1 with PDZ-RhoGEF (postsynaptic density protein 95/disc-large/zonula occludens-RhoGEF). Interestingly, ETAR-mediated invasive properties are related to the regulation of invadopodia, as evaluated by colocalization of actin with cortactin, as well as with TKS5 and MT1-MMP (membrane type 1-matrix metalloproteinase) with areas of matrix degradation, and activation of cofilin pathway, which is crucial for regulating invadopodia activity. Depletion of PDZ-RhoGEF, or β-arr1, or RhoC, as well as the treatment with the dual ET-1 receptor antagonist macitentan, significantly impairs invadopodia function, MMP activity and invasion, demonstrating that β-arr1/PDZ-RhoGEF interaction mediates ETAR-driven ROCK-LIMK-cofilin pathway through the control of RhoC activity. In vivo, macitentan is able to inhibit metastatic dissemination and cofilin phosphorylation. Collectively, our data unveil a noncanonical activation of the RhoC/ROCK pathway through the β-arr1/PDZ-RhoGEF complex as a regulator of ETAR-induced motility and metastasis, establishing ET-1 axis as a novel regulator of invadopodia protrusions through the RhoC/ROCK/LIMK/cofilin pathway during the initial steps of EOC invasion.


PLOS ONE | 2014

Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide.

Claudia Scarponi; Elena Butturini; Rosanna Sestito; Stefania Madonna; Andrea Cavani; Sofia Mariotto; Cristina Albanesi

The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH)/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorate the disease. Recently, dehydrocostuslactone (DCE) and costunolide (CS), two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-γ, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-γ-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. In light of our findings, we can hypothesize that the employment of DCE and CS in psoriasis could efficiently counteract the pro-inflammatory effects of IFN-γ and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit hyperproliferation in the psoriatic epidermis.


BioMed Research International | 2009

Low-Frequency Low-Intensity Ultrasounds Do Not Influence the Survival and Immune Functions of Cultured Keratinocytes and Dendritic Cells

Claudia Scarponi; Francesca Nasorri; Francesca Pavani; Stefania Madonna; Rosanna Sestito; Marco Simonacci; Ornella De Pità; Andrea Cavani; Cristina Albanesi

Low-frequency ultrasounds (US) are used to enhance drug transdermal transport. Although this phenomenon has been extensively analyzed, information on US effects on the single skin cell components is limited. Here, we investigated the possible effects of low-frequency US on viability and immune functions of cultured human keratinocytes and dendritic cells (DC), skin cells involved in the regulation of many immune-mediated dermatoses. We demonstrated that US, employed at low-frequency (42 KHz) and low-intensity (0.15 W/cm2) values known to enhance drug and water transdermal transport, did not affect extracellular-signal-regulated-kinase (ERK)1/2 activation, cell viability, or expression of adhesion molecules in cultured keratinocytes. Moreover, US at these work frequency and intensity did not influence the keratinocyte expression and release of immunomodulatory molecules. Similarly, cultured DC treated with low-frequency low-intensity US were viable, and did not show an altered membrane phenotype, cytokine profile, nor antigen presentation ability. However, intensity enhancement of low-frequency US to 5 W/cm2 determined an increase of the apoptotic rate of both keratinocytes and DC as well as keratinocyte CXCL8 release and ERK1/2 activation, and DC CD40 expression. Our study sustains the employment of low-frequency and low-intensity US for treatment of those immune skin disorders, where keratinocytes and DC have a pathogenetic role.


Oncotarget | 2016

Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression

Roberta Cianfrocca; Piera Tocci; Laura Rosanò; Valentina Caprara; Rosanna Sestito; Valeriana Di Castro; Anna Bagnato

Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ETA receptor (ETAR)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ETAR axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ETAR by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ETAR/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ETAR signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression.


Cell Death & Differentiation | 2017

Blocking endothelin-1-receptor/ β -catenin circuit sensitizes to chemotherapy in colorectal cancer

Roberta Cianfrocca; Laura Rosanò; Piera Tocci; Rosanna Sestito; Valentina Caprara; Valeriana Di Castro; Ruggero De Maria; Anna Bagnato

The limited clinical response to conventional chemotherapeutics observed in colorectal cancer (CRC) may be related to the connections between the hyperactivated β-catenin signaling and other pathways in CRC stem-like cells (CRC-SC). Here, we show the mechanistic link between the endothelin-1 (ET-1)/ET-1 receptor (ET-1R) signaling and β-catenin pathway through the specific interaction with the signal transducer β-arrestin1 (β-arr1), which initiates signaling cascades as part of the signaling complex. Using a panel of patient-derived CRC-SC, we show that these cells secrete ET-1 and express ETAR and β-arr1, and that the activation of ETAR/β-arr1 axis promotes the cross-talk with β-catenin signaling to sustain stemness, epithelial-to-mesenchymal transition (EMT) phenotype and response to chemotherapy. Upon ETAR activation, β-arr1 acts as a transcription co-activator that binds β-catenin, thereby promoting nuclear complex with β-catenin/TFC4 and p300 and histone acetylation, inducing chromatin reorganization on target genes, such as ET-1. The enhanced transcription of ET-1 increases the self-sustained ET-1/β-catenin network. All these findings provide a strong rationale for targeting ET-1R to hamper downstream β-catenin/ET-1 autocrine circuit. Interestingly, treatment with macitentan, a dual ETAR and ETBR antagonist, able to interfere with tumor and microenvironment, disrupts the ET-1R/β-arr1-β-catenin interaction impairing pathways involved in cell survival, EMT, invasion, and enhancing sensitivity to oxaliplatin (OX) and 5-fluorouracil (5-FU). In CRC-SC xenografts, the combination of macitentan and OX or 5-FU enhances the therapeutic effects of cytotoxic drugs. Together, these results provide mechanistic insight into how ET-1R coopts β-catenin signaling and offer a novel therapeutic strategy to manage CRC based on the combination of macitentan and chemotherapy that might benefit patients whose tumors show high ETAR and β-catenin expression.


Life Sciences | 2016

Endothelin-1/endothelin A receptor axis activates RhoA GTPase in epithelial ovarian cancer

Piera Tocci; Valentina Caprara; Roberta Cianfrocca; Rosanna Sestito; Valeriana Di Castro; Anna Bagnato; Laura Rosanò

AIMS The endothelin-1 (ET-1)/ET A receptor (ETAR) signaling pathway is critical driver of epithelial ovarian cancer (EOC) progression. Emerging evidences demonstrate that the scaffolding protein β-arrestin-1 (β-arr1) downstream of ETAR guides cell motility, although the signaling pathways by which ETAR activation controls these process are not well understood. Here, we set out to molecularly dissect whether RhoA GTPase activation is a mediator of ET-1 signaling controlling EOC cell migration. MAIN METHODS We cultured EOC cell lines (HEY, SKOV3, OVCAR, A2780 and 2008) with ET-1 and the ET-1R antagonist macitentan. RhoA expression was evaluated by RT-PCR. Activation of RhoA and ROCK1 was evaluated by pull down and kinase assays, respectively. Cell motility was evaluated by chemotaxis and wound healing assays, in untrasfected cells by using ROCK chemical inhibitors, Y-27632 or Fasudil, or in cells after transfection with dominant negative RhoA construct. The phosphorylation of myosin light chain 2 (MLC2) was evaluated by immunoblotting. Pseudopodia formation was evaluated by a pseudopodia kit assay. KEY FINDINGS In EOC cells, ET-1 activates RhoA and downstream ROCK1 and MLC2. These effects were inhibited by β-arr1 silencing, suggesting that ET-1/ETAR regulate RhoA signaling through β-arr1. At functional level, the activation of RhoA/ROCK signaling led to enhanced cell migration and pseudopodia formation. The suppressive effect of the ROCK inhibitors, as well as of macitentan, demonstrates that RhoA is involved in ET-1/ETAR-induced cell migration. SIGNIFICANCE Altogether these findings reveal a new pathway that depends on β-arr1 to sustain RhoA/ROCK signaling in response to ETAR activation in EOC.


Oncotarget | 2017

SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes

Stefania Madonna; Claudia Scarponi; Martina Morelli; Rosanna Sestito; Pasqualina Liana Scognamiglio; Daniela Marasco; Cristina Albanesi

Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes. In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.

Collaboration


Dive into the Rosanna Sestito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina Albanesi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cavani

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriella Ferrandina

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge