Rosaria Greco
University of Pavia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosaria Greco.
European Journal of Pharmacology | 2003
Cristina Tassorelli; Rosaria Greco; Dechun Wang; Maurizio Sandrini; Giorgio Sandrini; Giuseppe Nappi
Nitroglycerin is a nitric oxide (NO) donor which activates nuclei involved in nociceptive transmission following systemic administration. The effect of nitroglycerin on the nociceptive threshold was studied in rats by means of two experimental tests that explore different modalities of pain: the tail-flick test and the formalin test. Nitroglycerin induced a significant reduction in the latency of the tail flick 2 and 4 h after its administration. Similarly, formalin-induced pain-related behaviour increased significantly 2 and 4 h after nitroglycerin administration.
Cephalalgia | 2005
Cristina Tassorelli; Rosaria Greco; P. Morazzoni; A. Riva; Giorgio Sandrini; Giuseppe Nappi
Tanacetum parthenium (TP) is a member of the Asteracee family long used empirically as a herbal remedy for migraine. So far, however, clinical trials have failed to prove consistently the effectiveness of TP extracts in preventing migraine attacks, probably as a consequence of the uncertainty as regards the active principle. In this study, the biological effects of different TP extracts and purified parthenolide were tested in an animal model of migraine based on the quantification of neuronal activation induced by nitroglycerin. The extract enriched in parthenolide significantly reduced nitroglycerin-induced Fos expression in the nucleus trigeminalis caudalis. Purified parthenolide inhibited nitroglycerin-induced neuronal activation in additional brain nuclei and, significantly, the activity of nuclear factor-κB. These findings strongly suggest that parthenolide is the component responsible for the biological activity of TP as regards its antimigraine effect and provide important information for future controlled clinical trials.
Experimental Neurology | 2010
Rosaria Greco; Valeria Gasperi; Mauro Maccarrone; Cristina Tassorelli
The recently discovered endocannabinoid system (ECS), which includes endocannabinoids and the proteins that metabolize and bind them, has been implicated in multiple regulatory functions both in health and disease. Several studies have suggested that ECS is centrally and peripherally involved in the processing of pain signals. This finding is corroborated by the evidence that endocannabinoids inhibit, through a cannabinoid type-1 receptor (CB1R)-dependent retrograde mechanism, the release of neurotransmitters controlling nociceptive inputs and that the levels of these lipids are high in those regions (such as sensory terminals, skin, dorsal root ganglia) known to be involved in transmission and modulation of pain signals. In this review we shall describe experimental and clinical data that, intriguingly, demonstrate the link between endocannabinoids and migraine, a neurovascular disorder characterized by recurrent episodic headaches and caused by abnormal processing of sensory information due to peripheral and/or central sensitization. Although the exact ECS-dependent mechanisms underlying migraine are not fully understood, the available results strongly suggest that activation of ECS could represent a promising therapeutical tool for reducing both the physiological and inflammatory components of pain that are likely involved in migraine attacks.
Neuroscience Letters | 2009
Fabio Blandini; B. Balestra; Giovanna Levandis; Marila Cervio; Rosaria Greco; Cristina Tassorelli; Mario Colucci; Marisa Faniglione; Eleonora Bazzini; Giuseppe Nappi; Paolo Clavenzani; S. Vigneri; R. De Giorgio; M. Tonini
Patients with Parkinsons disease develop motor disturbances often accompanied by peripheral autonomic dysfunctions, including gastrointestinal disorders, such as dysphagia, gastric stasis and constipation. While the mechanisms subserving enteric autonomic dysfunctions are not clearly understood, they may involve the enteric dopaminergic and/or nitrergic systems. In the present study, we demonstrate that rats with unilateral 6-hydroxydopamine lesion of nigrostriatal dopaminergic neurons develop a marked inhibition of propulsive activity compared to sham-operated controls, as indicated by a 60% reduction of daily fecal output at the 4th week of observation. Immunohistochemical data revealed that 6-hydroxydopamine treatment did not affect the total number of HuC/D-positive myenteric neurons in both the proximal and distal segments of ileum and colon. Conversely, in the distal ileum and proximal colon the number of nitrergic neurons was significantly reduced. These results suggest that a disturbed distal gut transit, reminiscent of constipation in the clinical setting, may occur as a consequence of a reduced propulsive motility, likely due to an impairment of a nitric oxide-mediated descending inhibition during peristalsis.
Neuroscience Letters | 2005
A. Costa; Antonella Smeraldi; Cristina Tassorelli; Rosaria Greco; Giuseppe Nappi
Nitric oxide (NO) plays an important role in initiation and maintenance of pain, and NO precursor nitroglycerin is able to activate spinal and brain structures involved in nociception. It is also known that acute and chronic stress induce biochemical changes affecting both pain threshold and behaviour, and that the biological pattern of depression can be mimicked in the laboratory using chronic unavoidable stress paradigms (learned helplessness). We, therefore, evaluated the effects of acute and chronic immobilization stress on pain response to nitroglycerin administration in the rat. Pain perception was expressed as the latency of response to a tail-flick test (hot stimulus). Measures were made 1, 2 and 4 h following nitroglycerin (10 mg/kg i.p.) or vehicle. Nitroglycerin caused hyperalgesia after 2 and 4 h (p < 0.05 versus baseline). Acute stress (90 min) induced a clear analgesic state (p < 0.01 versus non-stressed control animals), and nitroglycerin injection was unable to reverse stress-induced analgesia in this setting. By contrast, exposition to chronic immobilization stress (7 days) caused a significant increase in pain response (p < 0.05); in this case, hyperalgesia was shown to be further enhanced by nitroglycerin administration (p < 0.05 versus vehicle). These findings support the view that a condition of chronic stress used in the laboratory to reproduce the biological features of depression can enhance hyperalgesia induced by nitroglycerin administration. These observations may be relevant to pain disorders, and particularly to migraine, since nitroglycerin is able to induce spontaneous-like pain attacks in humans, and an unfavourable migraine outcome (transformation into a chronic daily headache) is associated with chronic stress and comorbid depression.
Cephalalgia | 2010
Rosaria Greco; Valeria Gasperi; Giorgio Sandrini; Giacinto Bagetta; Giuseppe Nappi; Mauro Maccarrone; Cristina Tassorelli
Endocannabinoids are involved in the modulation of pain and hyperalgesia. In this study we investigated the role of the endocannabinoid system in the migraine model based on nitroglycerin-induced hyperalgesia in the rat. Male rats were injected with nitroglycerin (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. The medulla, the mesencephalon and the hypothalamus were dissected out and utilized for the evaluation of activity of fatty acid amide hydrolase (that degrades the endocannabinoid anandamide), monoacylglycerol lipase (that degrades the endocannabinoid 2-arachidonoylglycerol), and binding sites specific for cannabinoid (CB) receptors. The findings obtained show that nitroglycerin-induced hyperalgesia is associated with increased activity of both hydrolases and increased density of CB binding sites in the mesencephalon. In the hypothalamus we observed an increase in the activity of fatty acid amide hydrolase associated with an increase in density of CB binding sites, while in the medulla only the activity of fatty acid amide hydrolase was increased. Anandamide also proved effective in preventing nitroglycerin-induced activation (c-Fos) of neurons in the nucleus trigeminalis caudalis. These data strongly support the involvement of the endocannabinoid system in the modulation of nitroglycerin-induced hyperalgesia, and, possibly, in the pathophysiological mechanisms of migraine.
Drugs | 2003
Cristina Tassorelli; Rosaria Greco; Giorgio Sandrini; Giuseppe Nappi
AbstractThe analgesic action of NSAIDs has been attributed to the peripheral inhibition of prostaglandin synthesis via the blockade of the enzyme cyclo-oxygenase (COX) and prevention of bradykinin and cytokine-induced hyperalgesia via inhibition of the release of tumour necrosis factor-α. However, it is becoming increasingly evident that NSAIDs exert their analgesic effect through several mechanisms. Recent data suggest that significant expression of COX-2 is found in the central nervous system, where COX-2 seems to have, together with nitric oxide, an important role in spinal nociceptive transmission. Nitroglycerin is a nitric oxide donor and induces a hyperalgesic state, partially mediated by central mechanisms. Nimesulide is a preferential COX-2 inhibitor widely used to treat pain.In this study, we evaluated the analgesic effect of nimesulide in several animal models of pain, intending to provide additional information on the characteristics of the analgesic effect of nimesulide, with specific focus on a possible central component. Study Design: Nimesulide was compared with vehicle in groups of 4–10 rats that were randomly tested with different models of pain. The experimental design also included study of the effect of nimesulide upon nitroglycerin-induced neuronal activation at central sites. Analysis of variance was used to evaluate the influence of time and treatments. Differences between groups at specific time-points were analysed by post-hoc t-test. A probability level of less than 5% was regarded as significant. Methods: The analgesic effect of nimesulide (or vehicle) was evaluated in male Sprague-Dawley rats. The animals underwent tail-flick and formalin tests, both performed in baseline conditions and after nitroglycerin-induced hyperalgesia. Two separate groups of rats were treated with nitroglycerin alone or nimesulide followed by nitroglycerin, and their brains were processed for immunocytochemical detection of Fos protein, a marker of neuronal activation. Results: Nimesulide showed a significant analgesic effect in both the tail-flick and the formalin tests in baseline conditions. In addition, the drug proved effective in counteracting nitroglycerin-induced hyperalgesia in both tests. Brain mapping of nuclei activated by the administration of nitroglycerin showed that nimesulide pretreatment significantly inhibited neuronal activation in several areas, namely the supraoptic nucleus, ventrolateral column of the periaqueductal grey, locus coeruleus, nucleus tractus solitarius and area postrema.We conclude that nimesulide possesses a strong analgesic and antihyperalgesic activity, the mechanisms of action of which are partly central.
Brain Research | 2007
Cristina Tassorelli; Marie Therese Armentero; Rosaria Greco; R. Fancellu; Giorgio Sandrini; Giuseppe Nappi; Fabio Blandini
In Parkinsons disease (PD), the motor dysfunction caused by degeneration of the nigrostriatal pathway is often associated with alterations of pain perception. This is likely related to the role that the nigrostriatal system may play in the processing of noxious, somatosensory stimuli. To further address this issue, we used a rodent model of PD, based on the unilateral, intrastriatal injection of neurotoxin 6-hydroxydopamine (6-OHDA). We investigated the effects of the nigrostriatal lesion on behavioral responses to pain tests designed to explore different aspects of nociception, such as the formalin test and the tail flick test; we also explored modifications in the expression of Fos protein, a marker of neuronal activation, in supraspinal nuclei involved in the integration of pain perception and stress-related behavior. Rats bearing the nigrostriatal lesion showed complex alterations in pain perception, including hyperalgesic responses to the tonic, inflammatory pain elicited by formalin injection, but only when the stimulus was delivered ipsilaterally to the lesion. This phenomenon was associated with delayed responses to the phasic, thermal stimulus induced by the tail flick test. The hyperalgesic response to the formalin test was accompanied by reduced Fos expression in the paraventricular nucleus of the hypothalamus, which is part of a network (the medial pain system) that mediates motivational-affective aspects of pain. Our results confirm that a unilateral alteration of central dopaminergic transmission disrupts the neural mechanisms underlying proper integration of painful stimuli, particularly in the hemibody ipsilateral to the dopaminergic denervation.
International Review of Neurobiology | 2007
Cristina Tassorelli; Rosaria Greco; Marie Therese Armentero; Fabio Blandini; Giorgio Sandrini; Giuseppe Nappi
Cyclooxygenase-2 (COX-2) may increase prostaglandin E(2) (PGE(2)) production in central nervous system (CNS) and contribute to the severity of pain responses in inflammatory pain. In this chapter, we sought to evaluate the possible role of COX-2 induction and prostaglandins (PGs) synthesis within neuronal areas proposed to be involved in migraine genesis in the animal model of migraine based on the administration of systemic nitroglycerin (NTG). Male Sprague-Dawley rats were injected with NTG (10mg/kg, i.p.) or vehicle and sacrificed 2 and 4h later. The hypothalamus and the lower brain stem were dissected out and utilized for the evaluation of COX-2 expression by means of Western blotting and for the determination of PGE(2) levels by means of ELISA immunoassay. COX-2 expression increased in the hypothalamus at 2h and in the lower brain stem at 4h. PGE(2) levels showed an opposite pattern of change with a decrease in PGE(2) levels at 2h in the hypothalamus and an increase at 4h in the lower brain stem. These data support the hypothesis that NTG administration is capable of activating the COX-2 pathway within cerebral areas. This activity may explain the pronociceptive effect of NTG described in animal and human models of pain. Most importantly, these findings point to mediators and areas that may be relevant for migraine pathogenesis and treatment.
European Journal of Neuroscience | 2003
Fabio Blandini; R. Fancellu; Francesco Orzi; Giuseppe Conti; Rosaria Greco; Cristina Tassorelli; Giuseppe Nappi
It has been suggested that activation of striatal neurons expressing D1 or D2 dopamine receptors elicits opposite changes in the net output of the basal ganglia circuitry and, consequently, in the functional interactions of the circuit with the cerebral cortex. In particular, it has been recently reported that striatal D1 receptors may regulate cortex function. To further address this issue, we mapped cerebral expression of Fos protein following intrastriatal stimulation of D1‐ or D2‐class receptors in freely moving animals. Using permanent cannulas implanted in the right striatum, Sprague–Dawley rats received intrastriatal microinfusions of SKF 38393 (D1 agonist) or quinpirole (D2 agonist) or saline (controls), combined with systemic administration of D1 antagonist SCH 23390 or D2 antagonist eticlopride or saline. Animals treated with SKF 38393 showed dose‐dependent, massive Fos increases in the motor, somatosensory, auditory, visual and limbic regions of the cerebral cortex, ipsilaterally to the injected striatum. Consistent Fos expression was also found in the injected striatum and, bilaterally, in the nucleus accumbens shell. These increases were effectively counteracted by systemic SCH 23390. Conversely, quinpirole did not induce significant cortical or striatal expression of Fos, which was instead observed after the systemic administration of eticlopride. Fos was not detected in any of the other basal ganglia nuclei, regardless of the dopamine agonists or antagonists used. Our results confirm that striatal D1 dopamine receptors play a central role in the modulation of cortical activity, thus providing additional information on the functional interaction between basal ganglia circuitry and cerebral cortex.