Rosario Moratalla
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosario Moratalla.
Cell | 1994
Ming Xu; Rosario Moratalla; Lisa H. Gold; Noboru Hiroi; George F. Koob; Ann M. Graybiel; Susumu Tonegawa
The brain dopaminergic system is a critical modulator of basal ganglia function and plasticity. To investigate the contribution of the dopamine D1 receptor to this modulation, we have used gene targeting technology to generate D1 receptor mutant mice. Histological analyses suggested that there are no major changes in general anatomy of the mutant mouse brains, but indicated that the expression of dynorphin is greatly reduced in the striatum and related regions of the basal ganglia. The mutant mice do not respond to the stimulant and suppressive effects of D1 receptor agonists and antagonists, respectively, and they exhibit locomotor hyperactivity. These results suggest that the D1 receptor regulates the neurochemical architecture of the striatum and is critical for the normal expression of motor activity.
Cell | 1994
Ming Xu; Xiu-Ti Hu; Donald C. Cooper; Rosario Moratalla; Ann M. Graybiel; Francis J. White; Susumu Tonegawa
The brain mesoaccumbens dopamine system is intricately involved in the psychomotor stimulant activities of cocaine. However, the extent to which different dopamine receptors mediate these effects has not yet been firmly established. The present study used dopamine D1 receptor mutant mice produced by gene targeting to investigate the role of this receptor in the effects induced by cocaine. In contrast with wild-type mice, which showed a dose-dependent increase in locomotion, D1 mutant mice exhibited a dose-dependent decrease. Electrophysiological studies of dopamine-sensitive nucleus accumbens neurons demonstrated a marked reduction in the inhibitory effects of cocaine on the generation of action potentials. In addition, the inhibitory effects of dopamine as well as D1 and D2 agonists were almost completely abolished, whereas those of serotonin were unaffected. D2-like dopamine receptor binding was also normal. These results demonstrate the essential role of the D1 receptor in the locomotor stimulant effects of cocaine and in dopamine-mediated neurophysiological effects within the nucleus accumbens.
Neuron | 1997
Ming Xu; Timothy E. Koeltzow; Giovanni Tirado Santiago; Rosario Moratalla; Donald C. Cooper; Xiu-Ti Hu; Norman M. White; Ann M. Graybiel; Francis J. White; Susumu Tonegawa
The dopamine D3 receptor is expressed primarily in regions of the brain that are thought to influence motivation and motor functions. To specify in vivo D3 receptor function, we generated mutant mice lacking this receptor. Our analysis indicates that in a novel environment, D3 mutant mice are transiently more active than wild-type mice, an effect not associated with anxiety state. Moreover, D3 mutant mice exhibit enhanced behavioral sensitivity to combined injections of D1 and D2 class receptor agonists, cocaine and amphetamine. However, the combined electrophysiological effects of the same D1 and D2 agonists on single neurons within the nucleus accumbens were not altered by the D3 receptor mutation. We conclude that one function of the D3 receptor is to modulate behaviors by inhibiting the cooperative effects of postsynaptic D1 and other D2 class receptors at systems level.
Neuron | 1996
Rosario Moratalla; Bulent Elibol; Mario Vallejo; Ann M. Graybiel
Repeated exposure to psychomotor stimulants produce long-term changes in behavior ranging from addiction to behavioral sensitization. Many of these behaviors depend on the nigrostriatal system of the basal ganglia. We show here that chronic cocaine exposure not only leads to time-varying alterations in the inducibility of bZIP transcription factors in individual striatal neurons, but also to long-lasting network changes in which ensembles of striatal neurons express these proteins. These network-level adaptations suggest that the behavioral sensitization induced by repeated psychomotor stimulant exposure may reflect an enduring functional reorganization of basal ganglia circuits.
Biological Psychiatry | 2006
Nancy Pavón; Ana B. Martín; Ainhoa Mendialdua; Rosario Moratalla
BACKGROUND The dopamine precursor 3,4-dihydroxyphenyl-L-alanine (L-DOPA) is currently the most efficacious noninvasive therapy for Parkinsons disease. A major complication of this therapy, however, is the appearance of the abnormal involuntary movements known as dyskinesias. We have developed a model of L-DOPA-induced dyskinesias in mice that reproduces the main clinical features of dyskinesia in humans. METHODS Dyskinetic symptoms were triggered by repetitive administration of a constant dose of L-DOPA (25 mg/kg, twice a day, for 25 days) in unilaterally 6-hydroxydopamine (6-OHDA) lesioned mice. Mice were examined for behavior, expression of FosB, neuropeptides, and externally regulated kinase (ERK) phosphorylation. RESULTS Dyskinetic symptoms appear toward the end of the first week of treatment and are associated with L-DOPA-induced changes in DeltaFosB and prodynorphin expression. L-DOPA also induces activation of ERK1/2 in the dopamine-depleted striatum. Interestingly, elevated FosB/DeltaFosB expression occurs exclusively within completely lesioned regions of the striatum, displaying an inverse correlation with remaining dopaminergic terminals. Following acute L-DOPA treatment, FosB expression occurs in direct striatal output neurons, whereas chronic L-DOPA also induces FosB expression in nitric oxide synthase-positive striatal interneurons. CONCLUSIONS This model provides a system in which genetic manipulation of individual genes can be used to elucidate the molecular mechanisms responsible for the development and expression of dyskinesia.
The Journal of Neuroscience | 2003
D. Centonze; Cristina Grande; Alessandro Usiello; Paolo Gubellini; Eric Erbs; Ana B. Martín; Antonio Pisani; Nadia Tognazzi; Giorgio Bernardi; Rosario Moratalla; Emiliana Borrelli; Paolo Calabresi
By stimulating distinct receptor subtypes, dopamine (DA) exerts presynaptic and postsynaptic actions on both large aspiny (LA) cholinergic and fast-spiking (FS) parvalbumin-positive interneurons of the striatum. Lack of receptor- and isoform-specific pharmacological agents, however, has hampered the progress toward a detailed identification of the specific DA receptors involved in these actions. To overcome this issue, in the present study we used four different mutant mice in which the expression of specific DA receptors was ablated. In D1 receptor null mice, D1R-/-, DA dose-dependently depolarized both LA and FS interneurons. Interestingly, SCH 233390 (10 μm), a D1-like (D1 and D5) receptor antagonist, but not l-sulpiride (3–10 μm), a D2-like (D2, D3, D4) receptor blocker, prevented this effect, implying D5 receptors in this action. Accordingly, immunohistochemical analyses in both wild-type and D1R-/- mice confirmed the expression of D5 receptors in both cholinergic and parvalbumin-positive interneurons of the striatum. In mice lacking D2 receptors, D2R-/-, the DA-dependent inhibition of GABA transmission was lost in both interneuron populations. Both isoforms of D2 receptor, D2L and D2S, were very likely involved in this inhibitory action, as revealed by the electrophysiological analysis of the effect of the DA D2-like receptor agonist quinpirole in two distinct mutants lacking D2L receptors and expressing variable contents of D2S receptors. The identification of the receptor subtypes involved in the actions of DA on different populations of striatal cells is essential to understand the circuitry of the basal ganglia and to develop pharmacological strategies able to interfere selectively with specific neuronal functions.
Biological Psychiatry | 2009
Sanja Darmopil; Ana B. Martín; Irene Ruiz De Diego; Sara Ares; Rosario Moratalla
BACKGROUND Pharmacologic studies have implicated dopamine D1-like receptors in the development of dopamine precursor molecule 3,4-dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesias and associated molecular changes in hemiparkinsonian mice. However, pharmacologic agents for D1 or D2 receptors also recognize other receptor family members. Genetic inactivation of the dopamine D1 or D2 receptor was used to define the involvement of these receptor subtypes. METHODS During a 3-week period of daily L-DOPA treatment (25 mg/kg), mice were examined for development of contralateral turning behavior and dyskinesias. L-DOPA-induced changes in expression of signaling molecules and other proteins in the lesioned striatum were examined immunohistochemically. RESULTS Chronic L-DOPA treatment gradually induced rotational behavior and dyskinesia in wildtype hemiparkinsonian mice. Dyskinetic symptoms were associated with increased FosB and dynorphin expression, phosphorylation of extracellular signal-regulated kinase, and phosphoacetylation of histone 3 (H3) in the lesioned striatum. These molecular changes were restricted to striatal areas with complete dopaminergic denervation and occurred only in dynorphin-containing neurons of the direct pathway. D1 receptor inactivation abolished L-DOPA-induced dyskinesias and associated molecular changes. Inactivation of the D2 receptor had no significant effect on the behavioral or molecular response to chronic L-DOPA. CONCLUSIONS Our results demonstrate that the dopamine D1 receptor is critical for the development of L-DOPA-induced dyskinesias in mice and in the underlying molecular changes in the denervated striatum and that the D2 receptor has little or no involvement. In addition, we demonstrate that H3 phosphoacetylation is blocked by D1 receptor inactivation, suggesting that inhibitors of H3 acetylation and/or phosphorylation may be useful in preventing or reversing dyskinesia.
Neuropsychopharmacology | 2007
Paulina Carriba; Oskar Ortiz; Kshitij Patkar; Zuzana Justinova; Jessica Stroik; Andrea Themann; Christa E. Müller; Anima S Woods; Bruce T. Hope; Francisco Ciruela; Vicent Casadó; Enric I. Canela; Carme Lluis; Steven R. Goldberg; Rosario Moratalla; Rafael Franco; Sergi Ferré
The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.
Neuroscience | 2003
M.D. Julian; Ana B. Martín; Beatriz Cuellar; F. Rodríguez de Fonseca; Miguel Navarro; Rosario Moratalla; Luis Miguel Garcia-Segura
Dopamine and endocannabinoids are neurotransmitters known to play a role in the activity of the basal ganglia motor circuit. While a number of studies have demonstrated functional interactions between type 1 cannabinoid (CB1) receptors and dopaminergic systems, we still lack detailed neuroanatomical evidence to explain their relationship. Single- and double-labeling methods (in situ hybridization and immunohistochemistry) were employed to determine both the expression and localization of CB1 receptors and tyrosine hydroxylase (TH) in the basal ganglia. In the striatum, we found an intense signal for CB1 receptor transcripts but low signal for CB1 receptor protein, whereas in the globus pallidus and substantia nigra we found the opposite; no hybridization signal but intense immunoreactivity. Consequently, CB1 receptors are synthesized in the striatum and mostly transported to its target areas. No co-expression or co-localization of CB1 receptors and TH was found. In the caudate-putamen, globus pallidus and substantia nigra, TH-immunoreactive fibers were interwoven with the CB1 receptor-immunoreactive neuropil and fibers. Our data suggest that the majority of the striatal CB1 receptors are located presynaptically on inhibitory GABAergic terminals, in a position to modulate neurotransmitter release and influence the activity of substantia nigra dopaminergic neurons. In turn, afferent dopaminergic fibers from the substantia nigra innervate CB1 receptor-expressing striatal neurons that are known to also express dopamine receptors. In conclusion, these data provide a neuroanatomical basis to explain functional interactions between endocannabinoid and dopaminergic systems in the basal ganglia.
The Journal of Neuroscience | 2002
Silva Fredduzzi; Rosario Moratalla; Angela Monopoli; Beatriz Cuellar; Kui Xu; Ennio Ongini; Francesco Impagnatiello; Michael A. Schwarzschild; Jiang-Fan Chen
To investigate the role of A2A adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated l-DOPA treatment in hemiparkinsonian wild-type (WT) and A2A adenosine receptor knock-out (A2AKO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A2A KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of l-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A2A KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A2A KO mice. Furthermore, dailyl-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A2AKO mice. Finally, repeated l-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A2A KO mice, raising the possibility that the A2A receptor may contribute to l-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A2A receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated l-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic l-DOPA treatment in Parkinsons disease may be attenuated by A2A receptor inactivation.