Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rose-Marie Karlsson is active.

Publication


Featured researches published by Rose-Marie Karlsson.


The Journal of Neuroscience | 2008

Impaired Fear Extinction Learning and Cortico-Amygdala Circuit Abnormalities in a Common Genetic Mouse Strain

Kathryn Hefner; Nigel Whittle; Jaynann Juhasz; Maxine Norcross; Rose-Marie Karlsson; Lisa M. Saksida; Timothy J. Bussey; Nicolas Singewald; Andrew B. Holmes

Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C57BL/6J for one-trial and multitrial fear conditioning, nociception, and extinction of conditioned taste aversion and an appetitive instrumental response. 129S1 were tested for sensitivity to the extinction-facilitating effects of extended training, as well as d-cycloserine and yohimbine treatment. To elucidate the neural basis of impaired 129S1 fear extinction, c-Fos and Zif268 expression was mapped after extinction recall. Results showed that impaired fear extinction in 129S1 was unrelated to altered fear conditioning or nociception, and was dissociable from intact appetitive extinction. Yohimbine treatment facilitated extinction in 129S1, but neither extended extinction training nor d-cycloserine treatment improved 129S1 extinction. After extinction recall, 129S1 showed reduced c-Fos and Zif268 expression in the infralimbic cortex and basolateral amygdala, and elevated c-Fos or Zif268 expression in central nucleus of the amygdala and medial paracapsular intercalated cell mass, relative to C57BL/6J. Collectively, these data demonstrate a deficit in fear extinction in 129S1 associated with a failure to properly engage corticolimbic extinction circuitry. This common inbred strain provides a novel model for studying impaired fear extinction in anxiety disorders.


The Journal of Neuroscience | 2010

Strain Differences in Stress Responsivity Are Associated with Divergent Amygdala Gene Expression and Glutamate-Mediated Neuronal Excitability

Khyobeni Mozhui; Rose-Marie Karlsson; Thomas L. Kash; Jessica Ihne; Maxine Norcross; Sachin Patel; Mollee R. Farrell; Elizabeth E. Hill; Carolyn Graybeal; Kathryn P. Martin; Marguerite Camp; Paul J. Fitzgerald; Daniel C. Ciobanu; Rolf Sprengel; Masayoshi Mishina; Cara L. Wellman; Danny G. Winder; Robert W. Williams; Andrew Holmes

Stress is a major risk factor for numerous neuropsychiatric diseases. However, susceptibility to stress and the qualitative nature of stress effects on behavior differ markedly among individuals. This is partly because of the moderating influence of genetic factors. Inbred mouse strains provide a relatively stable and restricted range of genetic and environmental variability that is valuable for disentangling gene–stress interactions. Here, we screened a panel of inbred strains for anxiety- and depression-related phenotypes at baseline (trait) and after exposure to repeated restraint. Two strains, DBA/2J and C57BL/6J, differed in trait and restraint-induced anxiety-related behavior (dark/light exploration, elevated plus maze). Gene expression analysis of amygdala, medial prefrontal cortex, and hippocampus revealed divergent expression in DBA/2J and C57BL/6J both at baseline and after repeated restraint. Restraint produced strain-dependent expression alterations in various genes including glutamate receptors (e.g., Grin1, Grik1). To elucidate neuronal correlates of these strain differences, we performed ex vivo analysis of glutamate excitatory neurotransmission in amygdala principal neurons. Repeated restraint augmented amygdala excitatory postsynaptic signaling and altered metaplasticity (temporal summation of NMDA receptor currents) in DBA/2J but not C57BL/6J. Furthermore, we found that the C57BL/6J-like changes in anxiety-related behavior after restraint were absent in null mutants lacking the modulatory NMDA receptor subunit Grin2a, but not the AMPA receptor subunit Gria1. Grin2a null mutants exhibited significant (∼30%) loss of dendritic spines on amygdala principal neurons under nonrestraint conditions. Collectively, our data support a model in which genetic variation in glutamatergic neuroplasticity in corticolimbic circuitry underlies phenotypic variation in responsivity to stress.


Molecular Psychiatry | 2008

Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and 'schizophrenia-related' behaviors.

Lisa M. Wiedholz; William A. Owens; Rebecca E. Horton; Michael Feyder; Rose-Marie Karlsson; Kathryn Hefner; Rolf Sprengel; Tansu Celikel; Lynette C. Daws; Andrew Holmes

There is growing evidence implicating dysfunctional glutamatergic neurotransmission and abnormal interactions between the glutamate and dopamine (DA) systems in the pathophysiology of various neuropsychiatric disorders including schizophrenia. The present study evaluated knockout (KO) mice lacking the L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) GluR1 receptor subunit for a range of behaviors considered relevant to certain symptoms of schizophrenia. KO showed locomotor hyperactivity during exposure to open field and in response to a novel object, but normal activity in a familiar home cage. Open field locomotor hyperactivity in KO was effectively normalized to WT levels by treatment with the DA antagonist and neuroleptic haloperidol, while locomotor stimulant effects of the NMDA receptor antagonist MK-801 were absent in KO. Social behaviors during a dyadic conspecific encounter were disorganized in KO. KO showed deficits in prepulse inhibition of the acoustic startle response. In vivo chronoamperometric measurement of extracellular DA clearance in striatum demonstrated retarded clearance in KO. These data demonstrate behavioral abnormalities potentially pertinent to schizophrenia in GluR1 KO, together with evidence of dysregulated DA function. Present findings provide novel insight into the potential role of GluR1, AMPA receptors and glutamate × DA interactions in the pathophysiology of schizophrenia and other neuropsychiatric conditions.


Neuropsychopharmacology | 2009

Assessment of Glutamate Transporter GLAST (EAAT1)-Deficient Mice for Phenotypes Relevant to the Negative and Executive/Cognitive Symptoms of Schizophrenia

Rose-Marie Karlsson; Kohichi Tanaka; Lisa M. Saksida; Timothy J. Bussey; Markus Heilig; Andrew B. Holmes

Glutamatergic dysfunction is increasingly implicated in the pathophysiology of schizophrenia. Current models postulate that dysfunction of glutamate and its receptors underlie many of the symptoms in this disease. However, the mechanisms involved are not well understood. Although elucidating the role for glutamate transporters in the disease has been limited by the absence of pharmacological tools that selectively target the transporter, we recently showed that glial glutamate and aspartate transporter (GLAST; excitatory amino-acid transporter 1) mutant mice exhibit abnormalities on behavioral measures thought to model the positive symptoms of schizophrenia, some of which were rescued by treatment with either haloperidol or the mGlu2/3 agonist, LY379268 the mGlu2/3 agonist, LY379268. To further determine the role of GLAST in schizophrenia-related behaviors we tested GLAST mutant mice on a series of behavioral paradigms associated with the negative (social withdrawal, anhedonia), sensorimotor gating (prepulse inhibition of startle), and executive/cognitive (discrimination learning, extinction) symptoms of schizophrenia. GLAST knockout (KO) mice showed poor nesting behavior and abnormal sociability, whereas KO and heterozygous (HET) both demonstrated lesser preference for a novel social stimulus compared to wild-type littermate controls. GLAST KO, but not HET, had a significantly reduced acoustic startle response, but no significant deficit in prepulse inhibition of startle. GLAST KO and HET showed normal sucrose preference. In an instrumental visual discrimination task, KO showed impaired learning. By contrast, acquisition and extinction of a simple instrumental response was normal. The mGlu2/3 agonist, LY379268, failed to rescue the discrimination impairment in KO mice. These findings demonstrate that gene deletion of GLAST produces select phenotypic abnormalities related to the negative and cognitive symptoms of schizophrenia.


Neuropsychopharmacology | 2008

Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning.

Rebecca J. Yang; Khyobeni Mozhui; Rose-Marie Karlsson; Heather A. Cameron; Robert W. Williams; Andrew Holmes

A wealth of research identifies the amygdala as a key brain region mediating negative affect, and implicates amygdala dysfunction in the pathophysiology of anxiety disorders. Although there is a strong genetic component to anxiety disorders such as posttraumatic stress disorder (PTSD) there remains debate about whether abnormalities in amygdala function predispose to these disorders. In the present study, groups of C57BL/6 × DBA/2 (B × D) recombinant inbred strains of mice were selected for differences in volume of the basolateral amygdala complex (BLA). Strains with relatively small, medium, or large BLA volumes were compared for Pavlovian fear learning and memory, anxiety-related behaviors, depression-related behavior, and glucocorticoid responses to stress. Strains with relatively small BLA exhibited stronger conditioned fear responses to both auditory tone and contextual stimuli, as compared to groups with larger BLA. The small BLA group also showed significantly greater corticosterone responses to stress than the larger BLA groups. BLA volume did not predict clear differences in measures of anxiety-like behavior or depression-related behavior, other than greater locomotor inhibition to novelty in strains with smaller BLA. Neither striatal, hippocampal nor cerebellar volumes correlated significantly with any behavioral measure. The present data demonstrate a phenotype of enhanced fear conditioning and exaggerated glucocorticoid responses to stress associated with small BLA volume. This profile is reminiscent of the increased fear processing and stress reactivity that is associated with amygdala excitability and reduced amygdala volume in humans carrying loss of function polymorphisms in the serotonin transporter and monoamine oxidase A genes. Our study provides a unique example of how natural variation in amygdala volume associates with specific fear- and stress-related phenotypes in rodents, and further supports the role of amygdala dysfunction in anxiety disorders such as PTSD.


Biological Psychiatry | 2008

Loss of Glial Glutamate and Aspartate Transporter (Excitatory Amino Acid Transporter 1) Causes Locomotor Hyperactivity and Exaggerated Responses to Psychotomimetics: Rescue by Haloperidol and Metabotropic Glutamate 2/3 Agonist

Rose-Marie Karlsson; Kohichi Tanaka; Markus Heilig; Andrew Holmes

BACKGROUND Recent data suggest that excessive glutamatergic signaling in the prefrontal cortex may contribute to the pathophysiology of schizophrenia and that promoting presynaptic glutamate modulation via group II metabotropic glutamate 2/3 (mGlu2/3) receptor activation can exert antipsychotic efficacy. The glial glutamate and aspartate transporter (GLAST) (excitatory amino acid transporter 1 [EAAT1]) regulates extracellular glutamate levels via uptake into glia, but the consequences of GLAST dysfunction for schizophrenia are largely unknown. METHODS We examined GLAST knockout mice (KO) for behaviors thought to model positive symptoms in schizophrenia (locomotor hyperactivity to novelty, exaggerated locomotor response to N-methyl-d-aspartate receptor [NMDAR] antagonism) and the ability of haloperidol and the mGlu2/3 agonist LY379268 to normalize novelty-induced hyperactivity. RESULTS Glial glutamate and aspartate transporter KO consistently showed locomotor hyperactivity to a novel but not familiar environment, relative to wild-type (WT) mice. The locomotor hyperactivity-inducing effects of the NMDAR antagonist MK-801 was exaggerated in GLAST KO relative to WT. Treatment with haloperidol or LY379268 normalized novelty-induced locomotor hyperactivity in GLAST KO. CONCLUSIONS Schizophrenia-related abnormalities in GLAST KO raise the possibility that loss of GLAST-mediated glutamate clearance could be a pathophysiological risk factor for the disease. Our findings provide novel support for the hypothesis that glutamate dysregulation contributes to the pathophysiology of schizophrenia and for the antipsychotic potential of mGlu2/3 agonists.


Pharmacology, Biochemistry and Behavior | 2005

Anxiolytic-like actions of centrally-administered neuropeptide Y, but not galanin, in C57BL/6J mice

Rose-Marie Karlsson; Andrew Holmes; Markus Heilig; Jacqueline N. Crawley

Neuropeptide Y (NPY) and galanin (GAL) are densely localized in brain regions subserving stress, fear and anxiety. While previous research supports a role for both neuropeptides in the mediation of rodent emotional behaviors, there is currently a lack of information on the effects of central administration of NPY and GAL on fear- and anxiety-related behaviors in mice. In the present study, the effects of intracerebroventricularly administered NPY and GAL were assessed in C57BL/6J mice on a battery of tests for fear- and anxiety-related behavior. NPY (0.5, 1.0 nmol) produced clear anxiolytic-like effects in the elevated plus-maze and light<-->dark exploration test, whereas GAL (0.5, 1.0 nmol) was without effect. NPY (0.5 nmol) also increased locomotor activity in the open field test. In the fear conditioning paradigm, NPY administered prior to training reduced freezing to context (0.5, 1.0 nmol) and auditory cue (1.0 nmol). Pre-training GAL (0.5 nmol) treatment reduced freezing to context. Taken together, results demonstrate robust effects of centrally-administered NPY, but not GAL, on anxiety-like behaviors and fear conditioning in mice. These findings provide a basis for future studies of mice with targeted gene mutations, directed at delineating the anatomical regions and receptor subtypes mediating the effects of NPY and GAL on emotion.


Psychopharmacology | 2007

The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice

Rose-Marie Karlsson; Jessica S. Choe; Heather A. Cameron; Annika Thorsell; Jacqueline N. Crawley; Andrew Holmes; Markus Heilig

RationaleNeuropeptide Y (NPY) is implicated in the pathophysiology of affective illness. Multiple receptor subtypes (Y1R, Y2R, and Y5R) have been suggested to contribute to NPY’s effects on rodent anxiety and depression-related behaviors.ObjectivesTo further elucidate the role of Y1R in (1) NPY’s anxiolytic-like effects and (2) fluoxetine’s antidepressant-like and neurogenesis-inducing effects.MethodsMice lacking Y1R were assessed for spontaneous anxiety-like behavior (open field, elevated plus-maze, and light/dark exploration test) and Pavlovian fear conditioning, and for the anxiolytic-like effects of intracerebroventricularly (icv)-administrated NPY (elevated plus-maze). Next, Y1R −/− were assessed for the antidepressant-like effects of acute fluoxetine in the forced swim test and chronic fluoxetine in the novelty-induced hypophagia test, as well as for chronic fluoxetine-induced hippocampal neurogenesis.ResultsY1R −/− exhibited largely normal baseline behavior as compared to +/+ littermate controls. Intraventricular administration of NPY in Y1R −/− mice failed to produce the normal anxiolytic-like effect in the elevated plus-maze test seen in +/+ mice. Y1R mutant mice showed higher immobility in the forced swim test and longer latencies in the novelty-induced hypophagia test. In addition, Y1R −/− mice responded normally to the acute and chronic effects of fluoxetine treatment in the forced swim test and the novelty-induced hypophagia test, respectively, as well as increased neuronal precursor cell proliferation in the hippocampus.ConclusionsThese data demonstrate that Y1R is necessary for the anxiolytic-like effects of icv NPY, but not for the antidepressant-like or neurogenesis-inducing effects of fluoxetine. The present study supports targeting Y1R as a novel therapeutic target for anxiety disorders.


Neuron | 2015

Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons.

Kenneth A. Pelkey; Elizabeth Barksdale; Michael T. Craig; Xiaoqing Yuan; Madhav Sukumaran; Geoffrey A. Vargish; Robert M. Mitchell; Megan S. Wyeth; Ronald S. Petralia; Ramesh Chittajallu; Rose-Marie Karlsson; Heather A. Cameron; Yasunobu Murata; Matthew T. Colonnese; Paul F. Worley; Chris J. McBain

Circuit computation requires precision in the timing, extent, and synchrony of principal cell (PC) firing that is largely enforced by parvalbumin-expressing, fast-spiking interneurons (PVFSIs). To reliably coordinate network activity, PVFSIs exhibit specialized synaptic and membrane properties that promote efficient afferent recruitment such as expression of high-conductance, rapidly gating, GluA4-containing AMPA receptors (AMPARs). We found that PVFSIs upregulate GluA4 during the second postnatal week coincident with increases in the AMPAR clustering proteins NPTX2 and NPTXR. Moreover, GluA4 is dramatically reduced in NPTX2(-/-)/NPTXR(-/-) mice with consequent reductions in PVFSI AMPAR function. Early postnatal NPTX2(-/-)/NPTXR(-/-) mice exhibit delayed circuit maturation with a prolonged critical period permissive for giant depolarizing potentials. Juvenile NPTX2(-/-)/NPTXR(-/-) mice display reduced feedforward inhibition yielding a circuit deficient in rhythmogenesis and prone to epileptiform discharges. Our findings demonstrate an essential role for NPTXs in controlling network dynamics highlighting potential therapeutic targets for disorders with inhibition/excitation imbalances such as schizophrenia.


Neurobiology of Disease | 2010

Does gene deletion of AMPA GluA1 phenocopy features of schizoaffective disorder

Paul J. Fitzgerald; Christopher Barkus; Michael Feyder; Lisa M. Wiedholz; Yi-Chyan Chen; Rose-Marie Karlsson; Rodrigo Machado-Vieira; Carolyn Graybeal; Trevor Sharp; Carlos A. Zarate; Judith Harvey-White; Jing Du; Rolf Sprengel; Peter Gass; David M. Bannerman; Andrew Holmes

Glutamatergic dysfunction is strongly implicated in schizophrenia and mood disorders. GluA1 knockout (KO) mice display schizophrenia- and depression-related abnormalities. Here, we asked whether GluA1 KO show mania-related abnormalities. KO were tested for behavior in approach/avoid conflict tests, responses to repeated forced swim exposure, and locomotor responses under stress and after psychostimulant treatment. The effects of rapid dopamine depletion and treatment with lithium or GSK-3β inhibitor on KO locomotor hyperactivity were tested. Results showed that KO exhibited novelty- and stress-induced locomotor hyperactivity, reduced forced swim immobility and alterations in approach/avoid conflict tests. Psychostimulant treatment and dopamine depletion exacerbated KO locomotor hyperactivity. Lithium, but not GSK-3β inhibitor, treatment normalized KO anxiety-related behavior and partially reversed hyperlocomotor behavior, and also reversed elevated prefrontal cortex levels of phospho-MARCKS and phospho-neuromodulin. Collectively, these findings demonstrate mania-related abnormalities in GluA1 KO and, combined with previous findings, suggest this mutant may provide a novel model of features of schizoaffective disorder.

Collaboration


Dive into the Rose-Marie Karlsson's collaboration.

Top Co-Authors

Avatar

Andrew Holmes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Heather A. Cameron

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn Graybeal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathryn Hefner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael Feyder

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Chyan Chen

National Defense Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jessica Ihne

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge