Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roselie Jongbloed is active.

Publication


Featured researches published by Roselie Jongbloed.


Circulation | 2006

Plakophilin-2 Mutations Are the Major Determinant of Familial Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

J. Peter van Tintelen; Mark M. Entius; Zahurul A. Bhuiyan; Roselie Jongbloed; Ans C.P. Wiesfeld; Arthur A.M. Wilde; Jasper J. van der Smagt; Ludolf G. Boven; Marcel Mannens; Irene M. van Langen; Robert M. W. Hofstra; Luuk Otterspoor; Pieter A. Doevendans; Luz-Maria Rodriguez; Isabelle C. Van Gelder; Richard N.W. Hauer

Background— Mutations in the plakophilin-2 gene (PKP2) have been found in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC). Hence, genetic screening can potentially be a valuable tool in the diagnostic workup of patients with ARVC. Methods and Results— To establish the prevalence and character of PKP2 mutations and to study potential differences in the associated phenotype, we evaluated 96 index patients, including 56 who fulfilled the published task force criteria. In addition, 114 family members from 34 of these 56 ARVC index patients were phenotyped. In 24 of these 56 ARVC patients (43%), 14 different (11 novel) PKP2 mutations were identified. Four different mutations were found more than once; haplotype analyses revealed identical haplotypes in the different mutation carriers, suggesting founder mutations. No specific genotype–phenotype correlations could be identified, except that negative T waves in V2 and V3 occurred more often in PKP2 mutation carriers (P<0.05). Of the 34 index patients whose family members were phenotyped, 23 familial cases were identified. PKP2 mutations were identified in 16 of these 23 ARVC index patients (70%) with familial ARVC. On the other hand, no PKP2 mutations at all were found in 11 probands without additional affected family members (P<0.001). Conclusions— PKP2 mutations can be identified in nearly half of the Dutch patients fulfilling the ARVC criteria. In familial ARVC, even the vast majority (70%) is caused by PKP2 mutations. However, nonfamilial ARVC is not related to PKP2. The high yield of mutational analysis in familial ARVC is unique in inherited cardiomyopathies.


European Heart Journal | 2003

The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands

Marielle Alders; Roselie Jongbloed; Wout H. Deelen; Arthur van den Wijngaard; Pieter A. Doevendans; Folkert J. ten Cate; Vera Regitz-Zagrosek; Hans Peter Vosberg; Irene M. van Langen; Arthur A.M. Wilde; Dennis Dooijes; Marcel Mannens

AIMS Hypertrophic cardiomyopathy (HCM) is caused by mutations in genes that encode sarcomeric proteins. In this study we investigated the involvement of the sarcomeric myosin binding protein C in the Dutch HCM population. METHODS AND RESULTS We initially screened 22 Dutch index patients for mutations in the MYBPC3 gene, which revealed four different mutations in 14 patients. The 2373insG mutation was identified in 10 apparently unrelated patients. A subsequent screening for the 2373insG mutation in a group of another 237 unrelated HCM patients revealed 50 additional carriers of the same genetic defect. Genotyping with polymorphic repeat markers and intragenic SNPs of the 60 Dutch as well as two German and five North American 2373insG carriers indicated they all share the same haplotype. CONCLUSION The 2373insG mutation accounts for almost one-fourth of all HCM cases in the Netherlands (60/259), which is predominantly present in the northwestern part of the country (22/66) and is a founder mutation probably originating from the Netherlands.


Circulation-cardiovascular Genetics | 2009

Desmoglein-2 and Desmocollin-2 Mutations in Dutch Arrhythmogenic Right Ventricular Dysplasia/Cardiomypathy Patients Results From a Multicenter Study

Zahurul A. Bhuiyan; Jan D. H. Jongbloed; Jasper J. van der Smagt; Paola M. Lombardi; Ans C.P. Wiesfeld; Marcel R. Nelen; Meyke Schouten; Roselie Jongbloed; Moniek G.P.J. Cox; Marleen van Wolferen; Luz Maria Rodriguez; Isabelle C. Van Gelder; Hennie Bikker; Albert J. H. Suurmeijer; Maarten P. van den Berg; Marcel Mannens; Richard N.W. Hauer; Arthur A.M. Wilde; J. Peter van Tintelen

Background— This study aimed to evaluate the prevalence and type of mutations in the major desmosomal genes, Plakophilin-2 (PKP2), Desmoglein-2 (DSG2), and Desmocollin-2 (DSC2), in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) patients. We also aimed to distinguish relevant clinical and ECG parameters. Methods and Results— Clinical evaluation was performed according to the Task Force Criteria (TFC). We analyzed the genes in (a) 57 patients who fulfilled the ARVD/C TFC (TFC+), (b) 28 patients with probable ARVD/C (1 major and 1 minor, or 3 minor criteria), and (c) 31 patients with 2 minor or 1 major criteria. In the TFC+ ARVD/C group, 23 patients (40%) had PKP2 mutations, 4 (7%) had DSG2 mutations, and 1 patient (2%) carried a mutation in DSC2, whereas 1 patient (2%) had a mutation in both DSG2 and DSC2. Among the DSG2 and DSC2 mutation-positive TFC+ ARVD/C probands, 2 carried compound heterozygous mutations and 1 had digenic mutations. In probable ARVD/C patients and those with 2 minor or 1 major criteria for ARVD/C, mutations were less frequent and they were all heterozygous. Negative T waves in the precordial leads were observed more (P<0.002) among mutation carriers than noncarriers and in particular in PKP2 mutation carriers. Conclusions— Mutations in DSG2 and DSC2 are together less prevalent (10%) than PKP2 mutations (40%) in Dutch TFC+ ARVD/C patients. Interestingly, biallelic or digenic DSC2 and/or DSG2 mutations are frequently identified in TFC+ ARVD/C patients, suggesting that a single mutation is less likely to cause a full-blown ARVD/C phenotype. Negative T waves on ECG were prevalent among mutation carriers (P<0.002).


Human Mutation | 1999

Novel KCNQ1 and HERG missense mutations in Dutch long-QT families

Roselie Jongbloed; Arthur A. M. Wilde; Jan L.M.C. Geelen; P. Doevendans; C. Schaap; J.P. van Tintelen; Jan Maarten Cobben; Gertie C. M. Beaufort-Krol; Joep Geraedts; H.J.M. Smeets

Congenital long QT syndrome (cLQTS) is electrocardiographically characterized by a prolonged QT interval and polymorphic ventricular arrhythmias (torsade de pointes). These cardiac arrhythmias may result in recurrent syncopes, seizure, or sudden death. LQTS can occur either as an autosomal dominant (Romano Ward) or as an autosomal recessive disorder (Jervell and Lange‐Nielsen syndrome). Mutations in at least five genes have been associated with the LQTS. Four genes, encoding cardiac ion channels, have been identified. The most common forms of LQTS are due to mutations in the potassium‐channel genes KCNQ1 and HERG. We have screened 24 Dutch LQTS families for mutations in KCNQ1 and HERG. Fourteen missense mutations were identified. Eight of these missense mutations were novel: three in KCNQ1 and five in HERG. Novel missense mutations in KCNQ1 were Y184S, S373P, and W392R and novel missense mutations in HERG were A558P, R582C, G604S, T613M, and F640L. The KCNQ1 mutation G189R and the HERG mutation R582C were detected in two families. The pathogenicity of the mutations was based on segregation in families, absence in control individuals, the nature of the amino acid substitution, and localization in the protein. Genotype‐phenotype studies indicated that auditory stimuli as trigger of cardiac events differentiate LQTS2 and LQTS1. In LQTS1, exercise was the predominant trigger. In addition, a number of asymptomatic gene defect carriers were identified. Asymptomatic carriers are still at risk of the development of life‐threatening arrhythmias, underlining the importance of DNA analyses for unequivocal diagnosis of patients with LQTS. Hum Mutat 13:301–310, 1999.


Netherlands Heart Journal | 2010

Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands

Imke Christiaans; Eline A. Nannenberg; Dennis Dooijes; Roselie Jongbloed; Michelle Michels; Pieter G. Postema; Danielle Majoor-Krakauer; A. van den Wijngaard; M.M.A.M. (Marcel) Mannens; van Peter Tintelen; van Irene Langen; A.A.M. Wilde

In this part of a series on cardiogenetic founder mutations in the Netherlands, we review the Dutch founder mutations in hypertrophic cardiomyopathy (HCM) patients. HCM is a common autosomal dominant genetic disease affecting at least one in 500 persons in the general population. Worldwide, most mutations in HCM patients are identified in genes encoding sarcomeric proteins, mainly in the myosin-binding protein C gene (MYBPC3, OMIM #600958) and the beta myosin heavy chain gene (MYH7, OMIM #160760). In the Netherlands, the great majority of mutations occur in the MYBPC3, involving mainly three Dutch founder mutations in the MYBPC3 gene, the c.2373_2374insG, the c.2864_2865delCT and the c.2827C>T mutation. In this review, we describe the genetics of HCM, the genotype-phenotype relation of Dutch founder MYBPC3 gene mutations, the prevalence and the geographic distribution of the Dutch founder mutations, and the consequences for genetic counselling and testing. (Neth Heart J 2010;18:248-54.)


Journal of the American College of Cardiology | 2003

Variable clinical manifestation of a novel missense mutation in the alpha-tropomyosin (TPM1) gene in familial hypertrophic cardiomyopathy

Roselie Jongbloed; Carlo Marcelis; Pieter A. Doevendans; Judith M Schmeitz-Mulkens; Willem G. van Dockum; Joep Geraedts; H.J.M. Smeets

OBJECTIVES This study was initiated to identify the disease-causing genetic defect in a family with hypertrophic cardiomyopathy (HCM) and high incidence of sudden death. BACKGROUND Familial hypertropic cardiomyopathy (FHC) is an autosomal dominant transmitted disorder that is genetically and clinically heterogeneous. Mutations in 11 genes have been associated with the pathogenesis of the disease. METHODS We studied a large FHC family, first by linkage analysis, to identify the gene involved, and subsequently screened the gene, encoding alpha-tropomyosin (TPM1), for mutations by using single-strand conformation polymorphism and sequencing analysis. RESULTS Twelve family members presented clinical features of HCM, five of whom died at young age, while others had only mild clinical features. Marker analysis showed linkage for the TPM1 gene on chromosome 15q22 (maximal logarithm of the odds score is 5.16, theta = 0); subsequently, a novel missense mutation (Glu62Gln) was identified. CONCLUSIONS The novel mutation identified in TPM1 is associated with the clinical features of cardiac hypertrophy in all but one genetically affected member of this large family. The clinical data suggest a malignant phenotype at young age with a variable clinical manifestation and penetrance at older age. The Glu62Gln mutation is the sixth TPM1 mutation identified as the cause of FHC, indicating that mutations in this gene are very rare. This is the first reported amino acid substitution at the f-position within the coiled-coil structure of the tropomyosin protein.


Circulation | 2005

Novel Mutation in the Per-Arnt-Sim Domain of KCNH2 Causes a Malignant Form of Long-QT Syndrome

Tom Rossenbacker; Kanigula Mubagwa; Roselie Jongbloed; Johan Vereecke; Koenraad Devriendt; Marc Gewillig; Edward Carmeliet; Desire Collen; Hein Heidbuchel; Peter Carmeliet

Background—It has been proposed that the highest risk for cardiac events in patients with long-QT syndrome subtype 2 (LQT2) is related to mutations in the pore region of the KCNH2 channel. It has also been suggested that a subpopulation of LQT2 patients may benefit from pharmacological therapy with modified KCNH2 channel–blocking drugs. Methods and Results—In a large LQT2 family (n=33), we have identified a novel nonpore missense mutation (K28E) in the Per-Arnt-Sim (PAS) domain of the KCNH2 channel associated with a malignant phenotype: One third of the suspected gene carriers experienced a major cardiac event. Wild-type and K28E-KCNH2 channels were transiently transfected in HEK293 cells. For the mutant channel, whole-cell patch-clamp analysis showed a reduced current density, a negative shift of voltage-dependent channel availability, and an increased rate of deactivation. Western blot analysis and confocal imaging revealed a trafficking deficiency for the mutant channel that could be rescued by the K+ channel blocker E-4031. In cells containing both wild-type and mutant channels, deactivation kinetics were normal. In these cells, reduced current density was restored with E-4031. Conclusions—Our data suggest that besides pore mutations, mutations in the PAS domain may also exhibit a malignant outcome. Pharmacological restoration of current density is promising as a mutation-specific therapy for patients carrying this trafficking-defective mutant.


Human Genetics | 1997

The long QT syndrome: a novel missense mutation in the S6 region of the KVLQT1 gene

M. H. van den Berg; Arthur A. M. Wilde; E.O. Robles de Medina; Henk Meyer; Jan Geelen; Roselie Jongbloed; Hein J.J. Wellens; Joep Geraedts

Abstract The Romano Ward long QT syndrome (LQTS) has an autosomal dominant mode of inheritance. Patients suffer from syncopal attacks often resulting in sudden cardiac death. The main diagnostic parameter is a prolonged QT(c) interval as judged by electro-cardiographic investigation. LQTS is a genetically heterogeneous disease with four loci having been identified to date: chromosome 11p15.5 (LQT1), 7q35–36 (LQT2), 3p21–24 (LQT3) and 4q25–26 (LQT4). The corresponding genes code for potassium channels KVLQT1 (LQT1)and HERG (LQT2) and the sodium channel SCN5A (LQT3). The KVLQT1 gene is characterized by six transmembrane domains (S1– S6), a pore region situated between the S5 and S6 domains and a C-terminal domain accounting for approximately 60% of the channel. This domain is thought to be co-associated with another protein, viz. minK (minimal potassium channel). We have studied a Romano Ward family with several affected individuals showing a severe LQTS phenotype (syncopes and occurrence of sudden death). Most affected individuals had considerable prolongations of QT(c). By using haplotyping with a set of markers covering the four LQT loci, strong linkage was established to the LQT1 locus, whereas the other loci (LQT2, LQT3 and LQT4) could be excluded. Single-strand conformation polymorphism analysis and direct sequencing were used to screen the KVLQT1 gene for mutations in the S1–S6 region, including the pore domain. We identified a Gly-216-Arg substitution in the S6 transmembrane domain of KVLQT1. The mutation was present in all affected family members but absent in normal control individuals, providing evidence that the mutated KVLQT1-gene product indeed caused LQTS in this family. The mutated KVLQT1-gene product thus probably results in a dominant negative suppression of channel activity.


Netherlands Heart Journal | 2011

Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

Nynke Hofman; Roselie Jongbloed; Pieter G. Postema; Eline A. Nannenberg; M. Alders; Arthur A.M. Wilde

Background and objectiveThe long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS.MethodsBy use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1–3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands.ResultsWe counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands.ConclusionWhereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our country.


Human Genetics | 1993

RFLP haplotyping and mutation analysis of the phenylalanine hydroxylase gene in Dutch phenylketonuria families.

Henk Meijer; Roselie Jongbloed; M. Hekking; Leo J. M. Spaapen; Joep Geraedts

Restriction fragment length polymorphism haplotyping of mutated and normal phenylalanine hydroxylase (PAH) alleles in 49 Dutch phenylketonuria (PKU) families was performed. All mutant PAH chromosomes identified by haplotyping (n = 98) were screened for eight of the most predominant mutations. Compound heterozygosity was proven in 40 kindreds. Homozygosity was found for the IVS12nt1 mutation in 5 families, and for the R158Q and IVS10nt546 mutations in one family each. All patients from these families suffer from severe PKU, providing additional proof that these mutations are deleterious for the PAH gene. Genotypical heterogeneity was evident for mutant haplotype 1 (n = 27) carrying the mutations R261Q (n = 12), E280K (n = 4), P281L (n = 1) and unknown (n = 10), and likewise for mutant haplotype 4 (n = 30) carrying the mutations R158Q (n = 13), Y414C (n = 1) and unknown (n = 16). Mutant haplotype 3 (n = 20), in tight association with mutation IVS12nt1, appeared to be in strong linkage disequilibrium (LDE) with its normal counterpart allele (n = 4). Mutant haplotype 6 (n = 4), in tight association with the IVS10nt546 mutation, showed moderate LDE with its counterpart allele (n = I). The distribution of the mutant PAH haplotypes 1, 3 and 4 among the Dutch PKU population resembles that in other Northern and Western European countries, but it is striking that mutant haplotype 2 and its associated mutation R408W is nearly absent in The Netherlands, in strong contrast to its neighbouring countries.

Collaboration


Dive into the Roselie Jongbloed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan D. H. Jongbloed

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ans C.P. Wiesfeld

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Carl Timmermans

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge