Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosella Fulceri is active.

Publication


Featured researches published by Rosella Fulceri.


Biochimica et Biophysica Acta | 1986

Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation

Hermann Esterbauer; Angelo Benedetti; Johanna Lang; Rosella Fulceri; Günther Fauler; Mario Comporti

The mechanism of the formation of 4-hydroxynonenal through the NADPH-linked microsomal lipid peroxidation was investigated. The results were as follows: 4-hydroxynonenal arises exclusively from arachidonic acid contained in the polar phospholipids, neither arachidonic acid of the neutral lipids nor linoleic acid of the polar or neutral lipids are substrates for 4-hydroxynonenal generation. This finding results from the estimation of the specific radioactivity of 4-hydroxynonenal produced by microsomes prelabelled in vivo with [U-14C]arachidonic acid. Phospholipid-bound 15-hydroperoxyarachidonic acid would have the structural requirements needed for 4-hydroxynonenal (CH3-(CH2)4-CH(OH)-CH=CH-CHO). Microsomes supplemented with 15-hydroperoxyarachidonic acid and NADPH, ADP/iron converted only minimal amounts (0.6 mol%) of 15-hydroperoxyarachidonic acid into 4-hydroxynonenal; similarly, 15-hydroperoxyarachidonic acid incubated at pH 7.4 in the presence of ascorbate/iron yielded only small amounts of 4-hydroxynonenal with a rate orders of magnitude below that observed with microsomes. Phospholipid-bound 15-hydroperoxyarachidonic acid is therefore not a likely intermediate in the reaction pathway leading to 4-hydroxynonenal. The rate of 4-hydroxynonenal formation is highest during the very initial phase of its formation and the onset does not show a lag phase, suggesting a transient intermediate predominantly formed during the early phase of microsomal lipid peroxidation. After 60 min of incubation, 204 nmol polyunsaturated fatty acids (20 nmol 18:2, 143 nmol 20:4, 41 nmol 22:6) were lost per mg microsomal protein and the incubation mixture contained 206 nmol lipid peroxides, 71.6 nmol malonic dialdehyde and 4.6 nmol 4-hydroxynonenal per mg protein. Under artificial conditions (pH 1.0, ascorbate/iron, 20 h of incubation) not comparable to the microsomal peroxidation system, 15-hydroperoxyarachidonic acid can be decomposed in good yields (15 mol%) into 4-hydroxynonenal. Autoxidation of arachidonic acid in the presence of ascorbate/iron gave after 25 h of incubation 2.8 mol% (pH 7.4) and 1.5 mol% (pH 1.0) 4-hydroxynonenal. The most remarkable difference between the non-enzymic system and the enzymic microsomal system is that the latter forms 4-hydroxynonenal at a much higher rate.


Biochimica et Biophysica Acta | 1984

Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids. Identification of 4,5-dihydroxydecenal.

Angelo Benedetti; Mario Comporti; Rosella Fulceri; Hermann Esterbauer

During the NADPH-Fe-induced peroxidation of liver microsomal lipids products are formed which are provided with cytopathological activities. In a previous study one of the major products was identified as an aldehyde of the 4-hydroxyalkenal class, namely 4-hydroxynonenal. In the present study another cytotoxic product has been isolated and identified as 4,5-dihydroxy-2,3-decenal. The isolation was performed by means of thin-layer chromatography and high-pressure liquid chromatography and the structure was ascertained mainly by means of mass spectroscopy of the free aldehyde and of its derivatives. In the absence of NADPH-Fe liver microsomes produced no 4,5-dihydroxydecenal. The inhibitory activity of 4,5-dihydroxydecenal on microsomal glucose-6-phosphatase is somewhat lower than that exhibited by 4-hydroxynonenal. This lower inhibitory activity correlates with the lower capacity to bind to the microsomal protein of 4,5-dihydroxydecenal as compared to 4-hydroxynonenal. The reactivities of the two aldehydes with cysteine were comparable. The production of toxic aldehydes may represent a mechanism by which lipid peroxidation causes deleterious effects on cellular functions.


Journal of Biological Chemistry | 1999

Preferential transport of glutathione versus glutathione disulfide in rat liver microsomal vesicles.

Gábor Bánhegyi; Lorenzo Lusini; Ferenc Puskás; Ranieri Rossi; Rosella Fulceri; Lásazló Braun; Valéria Mile; Paolo Di Simplicio; József Mandl; Angelo Benedetti

A bi-directional, saturable transport of glutathione (GSH) was found in rat liver microsomal vesicles. GSH transport could be inhibited by the anion transport blockers flufenamic acid and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid. A part of GSH taken up by the vesicles was metabolized to glutathione disulfide (GSSG) in the lumen. Microsomal membrane was virtually nonpermeable toward GSSG; accordingly, GSSG generated in the microsomal lumen could hardly exit. Therefore, GSH transport, contrary to previous assumptions, is preferred in the endoplasmic reticulum, and GSSG entrapped and accumulated in the lumen creates the oxidized state of its redox buffer.


Biochimica et Biophysica Acta | 1982

Evidence for aldehydes bound to liver microsomal protein following CCl4 or BrCCl3 poisoning.

Angelo Benedetti; Hermann Esterbauer; Marco Ferrali; Rosella Fulceri; Mario Comporti

Since it has been demonstrated in previous studies that peroxidation of liver microsomal lipids leads to the production of aldehydes provided with cytopathological activities--namely 4-hydroxyalkenals--evidence was searched for aldehydes bound to microsomal protein in in vivo conditions (CCl4 and BrCCl3 intoxications) in which peroxidation of lipids of hepatic endoplasmic reticulum had been demonstrated previously. The spectrophotometric analysis of 2,4-dinitrophenylhydrazine-treated non-lipoidal residues of liver microsomes from the intoxicated rats shows absorption spectra similar to those observed for the dinitrophenylhydrazones formed in the reaction of alkenals with -SH groups of proteins or low molecular weight thiols. Similar spectra, although magnified from a quantitative point of view, were obtained either with liver microsomes allowed to react with synthetic 4-hydroxynonenal or with liver microsomes peroxidized in the NADPH-Fe-dependent system. A time-course study of microsomal lipid peroxidation shows that the amount of 2,4-dinitrophenylhydrazine-reacting groups in the non-lipoidal residue of liver microsomes increases with the incubation time and is correlated to the amount of thiobarbituric acid-reacting products formed in the incubation mixture. In both the in vivo conditions (CCl4 and BrCCl3 intoxications) the amount of 2,4-dinitrophenylhydrazine-reacting groups in the non-lipoidal residue of liver microsomes increases from 15 min up to 2 h after poisoning and is higher, in every instance, in the BrCCl3-intoxicated animals compared to the CCl4-poisoned ones. Experiments carried out to ascertain the reliability of the spectrophotometric detection of protein-bound alkenals showed that in the in vitro system in which liver microsomes are allowed to react with 4-hydroxynonenal there is a good agreement between the binding value that can be calculated from the absorption spectrum and the binding value obtained by using labelled 4-hydroxynonenal.


Journal of Biological Chemistry | 2006

Uncoupled Redox Systems in the Lumen of the Endoplasmic Reticulum PYRIDINE NUCLEOTIDES STAY REDUCED IN AN OXIDATIVE ENVIRONMENT

Simona Piccirella; Ibolya Czegle; Beáta Lizák; Éva Margittai; Silvia Senesi; Eszter Papp; Miklós Csala; Rosella Fulceri; Péter Csermely; József Mandl; Angelo Benedetti; Gábor Bánhegyi

The redox state of the intraluminal pyridine nucleotide pool was investigated in rat liver microsomal vesicles. The vesicles showed cortisone reductase activity in the absence of added reductants, which was dependent on the integrity of the membrane. The intraluminal pyridine nucleotide pool could be oxidized by the addition of cortisone or metyrapone but not of glutathione. On the other hand, intraluminal pyridine nucleotides were slightly reduced by cortisol or glucose 6-phosphate, although glutathione was completely ineffective. Redox state of microsomal protein thiols/disulfides was not altered either by manipulations affecting the redox state of pyridine nucleotides or by the addition of NAD(P)+ or NAD(P)H. The uncoupling of the thiol/disulfide and NAD(P)+/NAD(P)H redox couples was not because of their subcompartmentation, because enzymes responsible for the intraluminal oxidoreduction of pyridine nucleotides were distributed equally in smooth and rough microsomal subfractions. Instead, the phenomenon can be explained by the negligible representation of glutathione reductase in the endoplasmic reticulum lumen. The results demonstrated the separate existence of two redox systems in the endoplasmic reticulum lumen, which explains the contemporary functioning of oxidative folding and of powerful reductive reactions.


Biochimica et Biophysica Acta | 1982

Detection of carbonyl functions in phospholipids of liver microsomes in CCl4- and BrCCl3-poisoned rats.

Angeld Benedetti; Rosella Fulceri; Marco Ferrali; Lucia Ciccoli; Hermann Esterbauer; Mario Comporti

Since the peroxidative cleavage of unsaturated fatty acids can result in either the release of carbonyl compounds or the formation of carbonyl functions in the acyl residues, evidence for the presence of carbonyl groups in liver microsomal phospholipids was searched for in in vivo conditions (CCl4 and BrCCl3 intoxications) in which peroxidation of lipids of hepatic endoplasmic reticulum had been previously demonstrated. The spectrophotometric examination of 2,4-dinitrophenylhydrazine-treated phospholipids of liver microsomes from the intoxicated animals showed absorption spectra similar to those observed for the dinitrophenylhydrazones of various carbonyls. Similar spectra, although magnified from a quantitative point of view, were also observed with 2,4-dinitrophenylhydrazine-treated phospholipids of liver microsomes peroxidized in the NADPH-Fe-dependent system. A time-course study of microsomal lipid peroxidation showed that the amount of 2,4-dinitrophenylhydrazine-reacting groups (carbonyl functions) in phospholipids of liver microsomes increases with the incubation time and is correlated to the amount of malonic dialdehyde formed in the incubation mixture. The kinetics of the production of 4-hydroxynonenal was somewhat similar to that of malonic dialdehyde formation. In both the in vivo conditions (CCl4 and BrCCl3 intoxications) the amount of carbonyl functions in microsomal phospholipids, which was higher in the BrCCl3-intoxicated animals as compared to the CCl4-poisoned ones, was close to that found in the vitro condition in which lipid peroxidation is induced by 6 microM Fe2+. The possible pathological significance of formation of carbonyl functions in membrane phospholipids is discussed.


Biochimica et Biophysica Acta | 1984

Inhibition of calcium sequestration activity of liver microsomes by 4-hydroxyalkenals originating from the peroxidation of liver microsomal lipids

Angelo Benedetti; Rosella Fulceri; Mario Comporti

Aldehydes released during peroxidation of liver microsomal lipids and identified as 4-hydroxyalkenals (4-hydroxynonenal being quantitatively the most significant) strongly inhibited the calcium sequestration activity of liver microsomes. The ID50 for 4-hydroxynonenal was 42 microM. The inhibition appeared to be correlated with the amount of the aldehyde bound to the microsomal protein. In rats intoxicated with BrCCl3 significant amounts of protein-bound aldehydes were formed at only 5 min after poisoning, a time at which the calcium sequestring capacity is markedly inhibited.


Cell Calcium | 1997

Inhibition of storen-dependent capacitative Ca2+ influx by unsaturated fatty acids

Alessandra Gamberucci; Rosella Fulceri; Angelo Benedetti

Abstract The effects of the unsaturated fatty acids, arachidonic and oleic acid, on the influx of Ca 2+ activated by depletion of intracellular stores with thapsigargin were investigated in various cell types. By using a Ca 2+ free/Ca 2+ reintroduction protocol, we observed that arachidonic acid (2 to 5 μM) inhibited thapsigargin-induced rises in cytosolic free Ca 2+ ([Ca 2+ ] i ) in Ehrlich tumor cells, Jurkat T lymphocytes, rat thymocytes, and Friend erythroleukemia and PC12 rat pheochromocytoma cells. This effect was attributed to the inhibition of Ca 2+ entry, since arachidonate also inhibited thapsigargin-stimulated unidirectional entry of the Ca 2+ surrogates Ba 2+ and Mn 2+ . In Ehrlich cells, the IC, for arachidonic and oleic acid was 1.2 and 1.8 μM, respectively. The inhibition appeared to depend on the ratio [fatty acid]/[cells] rather than on the absolute fatty acid concentration. Experiments with [ 3 H]-oleic acid revealed that the inhibitory activity was not correlated with cell internalisation and metabolism of the fatty acid. The inhibition was reverted by removal of the fatty acid bound to cell membrane by fatty acid-free albumin treatment. The unsaturated fatty acids had no effect on ATP/ADP cell levels and plasma membrane potential. Pharmacological evidence indicated that cell phosphorylation/dephosphorylation events, and pertussis toxin-sensitive G proteins were not involved. Other amphipathic lipophilic compounds, i.e. 2-bromopalmitic acid, retinoic acid, sphingosine, and dihydrosphingosine, mimicked arachidonic/oleic acid as they inhibited thapsigargin-stimulated Ca 2+ influx in an albumin-reversible fashion. These results suggest that physiologically relevant (unsaturated) fatty acids can inhibit capacitative Ca 2+ influx possibly because they intercalate into the plasma membrane and directly affect the activity of the channels involved.


FEBS Letters | 1999

Mutations in the glucose-6-phosphate transporter (G6PT) gene in patients with glycogen storage diseases type 1b and 1c

Lucia Galli; Alfredo Orrico; Paola Marcolongo; Rosella Fulceri; Ann Burchell; Daniela Melis; Rossella Parini; Rosanna Gatti; Ching-Wan Lam; Angelo Benedetti; Vincenzo Sorrentino

Glycogen storage diseases type 1 (GSD 1) are a group of autosomal recessive disorders characterized by impairment of terminal steps of glycogenolysis and gluconeogenesis. Mutations of the glucose‐6‐phosphatase gene are responsible for the most frequent form of GSD 1, the subtype 1a, while mutations of the glucose‐6‐phosphate transporter gene (G6PT) have recently been shown to cause the non 1a forms of GSD, namely the 1b and 1c subtypes. Here, we report on the analysis by single‐stranded conformation polymorphism (SSCP) and/or DNA sequencing of the exons of the G6PT in 14 patients diagnosed either as affected by the GSD 1b or 1c subtypes. Mutations in the G6PT gene were found in all patients. Four of the detected mutations were novel mutations, while the others were previously described. Our results confirm that the GSD 1b and 1c forms are due to mutations in the same gene, i.e. the G6PT gene. We also show that the same kind of mutation can be associated or not with evident clinical complications such as neutrophil impairment. Since no correlation between the type and position of the mutation and the severity of the disease was found, other unknown factors may cause the expression of symptoms, such as neutropenia, which dramatically influence the severity of the disease.


Molecular and Cellular Endocrinology | 2006

Cooperativity between 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase is based on a common pyridine nucleotide pool in the lumen of the endoplasmic reticulum

Ibolya Czegle; Simona Piccirella; Silvia Senesi; Miklós Csala; József Mandl; Gábor Bánhegyi; Rosella Fulceri; Angelo Benedetti

11Beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is a NADP(H)-dependent oxidoreductase of the ER lumen, which may have an important role in the pathogenesis of metabolic syndrome. Here, the functional coupling of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase (H6PDH) was investigated in rat liver microsomal vesicles. The results demonstrate the existence of a separate intraluminal pyridine nucleotide pool in the hepatic endoplasmic reticulum and a close cooperation between 11betaHSD1 and H6PDH based on their co-localization and the mutual generation of cofactors for each other.

Collaboration


Dive into the Rosella Fulceri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge