Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosely A.B. Nichols is active.

Publication


Featured researches published by Rosely A.B. Nichols.


Experimental Parasitology | 2010

Cryptosporidium: Detection in water and food

Huw V. Smith; Rosely A.B. Nichols

Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.


Applied and Environmental Microbiology | 2003

Identification of Cryptosporidium spp. Oocysts in United Kingdom Noncarbonated Natural Mineral Waters and Drinking Waters by Using a Modified Nested PCR-Restriction Fragment Length Polymorphism Assay

Rosely A.B. Nichols; B. M. Campbell; Huw V. Smith

ABSTRACT We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65°C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.


American Journal of Tropical Medicine and Hygiene | 2010

Identification of a High Diversity of Cryptosporidium Species Genotypes and Subtypes in a Pediatric Population in Nigeria

Síle F. Molloy; Huw V. Smith; Patrick Kirwan; Rosely A.B. Nichols; S. O. Asaolu; Lisa Connelly; Celia V. Holland

A longitudinal study was conducted to determine the epidemiology of Cryptosporidium in 1,636 children in Nigeria. Oocyst prevalence ranged from 15.6% to 19.6% over one year. Cryptosporidium hominis (34), C. parvum (25), C. parvum/C. hominis (4), C. meleagridis (5), Cryptosporidium rabbit genotype (5), Cryptosporidium cervine genotype (3), and C. canis (1) were identified by polymerase chain reaction-restriction fragment length polymorphism analysis. Glycoprotein 60 subgenotyping showed that 28 amplifiable C. hominis isolates consisted of 12 subtypes that belonged to 5 subtype families (Ia, Ib, Id, Ie, and 1 novel subtype family, Ih) and 23 amplifiable C. parvum isolates consisted of 6 subtypes that belonged to 4 subtype families (IIa, IIc, Iii, and IIm). Three C. meleagridis isolates sub-genotyped by sequence analysis of the small subunit ribosomal RNA gene fragment were type 1. This study is the first one to genetically characterize Cryptosporidium species and subtypes in Nigeria and highlights the presence of a high Cryptosporidium diversity in this pediatric population.


Applied and Environmental Microbiology | 2010

Identification of Cryptosporidium Species and Genotypes in Scottish Raw and Drinking Waters during a One-Year Monitoring Period

Rosely A.B. Nichols; L. Connelly; C. B. Sullivan; Huw V. Smith

ABSTRACT We analyzed 1,042 Cryptosporidium oocyst-positive slides (456 from raw waters and 586 from drinking waters) of which 55.7% contained 1 or 2 oocysts, to determine species/genotypes present in Scottish waters. Two nested PCR-restriction fragment length polymorphism (RFLP) assays targeting different loci (1 and 2) of the hypervariable region of the 18S rRNA gene were used for species identification, and 62.4% of samples were amplified with at least one of the PCR assays. More samples (577 slides; 48.7% from raw water and 51.3% from drinking water) were amplified at locus 1 than at locus 2 (419 slides; 50.1% from raw water and 49.9% from drinking water). PCR at loci 1 and 2 amplified 45.4% and 31.7% of samples containing 1 or 2 oocysts, respectively. We detected both human-infectious and non-human-infectious species/genotype oocysts in Scottish raw and drinking waters. Cryptosporidiumandersoni, Cryptosporidiumparvum, and the Cryptosporidium cervine genotype (now Cryptosporidiumubiquitum) were most commonly detected in both raw and drinking waters, with C. ubiquitum being most common in drinking waters (12.5%) followed by C. parvum (4.2%) and C. andersoni (4.0%). Numerous samples (16.6% total; 18.9% from drinking water) contained mixtures of two or more species/genotypes, and we describe strategies for unraveling their identity. Repetitive analysis for discriminating mixtures proved useful, but both template concentration and PCR assay influenced outcomes. Five novel Cryptosporidium spp. (SW1 to SW5) were identified by RFLP/sequencing, and Cryptosporidium sp. SW1 was the fourth most common contaminant of Scottish drinking water (3%).


Applied and Environmental Microbiology | 2002

Significance of Enhanced Morphological Detection of Cryptosporidium sp. Oocysts in Water Concentrates Determined by Using 4′,6′-Diamidino-2-Phenylindole and Immunofluorescence Microscopy

Huw V. Smith; B. M. Campbell; C. A. Paton; Rosely A.B. Nichols

ABSTRACT Of 2,361 water concentrates analyzed for the presence of Cryptosporidium spp. oocysts between January 1992 and May 1998, 269 (11.4%) were positive, of which 235 (87.4%) were raw and 34 were final water concentrates. Of 740 oocysts enumerated in positive samples, 656 oocysts (88.7%) were detected in raw and 84 oocysts (11.3%) were detected in final water concentrates by using a commercially available fluorescein isothiocyanate-labeled anti-Cryptosporidium sp. monoclonal antibody and the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Of raw water positive samples, 66.8% had oocysts that contained nuclei, while 58.8% of final water samples had oocysts that contained nuclei. The most frequently identified oocysts had either no DAPI-positive nuclei and no internal morphology according to Nomarski differential interference-contrast microscopy (DIC) or four DAPI-positive nuclei together with internal contents according to DIC (39.5 and 32.8% of raw and 42.9 and 30.9% of final water positives, respectively). By use of the presence of DAPI-stained nuclei to support oocyst identification based upon oocyst wall fluorescence, 56.5% of oocysts were identified when at least one nucleus was present, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 32.8% in raw water concentrates. In final water concentrates, 51% of oocysts were identified using oocyst wall fluorescence and the presence of at least one nucleus, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 30.9%. By consolidating our identification criteria from the presence of at least one nucleus to the presence of four nuclei, we excluded approximately 20% of oocysts in either water type. Approximately 40% of oocysts detected in these United Kingdom samples were empty and could not be detected by alternative methods, including the PCR and fluorescence in situ hybridization.


Applied and Environmental Microbiology | 2006

Molecular Fingerprinting of Cryptosporidium Oocysts Isolated during Water Monitoring

Rosely A.B. Nichols; B. M. Campbell; Huw V. Smith

ABSTRACT We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.


Journal of Food Protection | 2004

Optimization of DNA Extraction and Molecular Detection of Cryptosporidium Oocysts in Natural Mineral Water Sources

Rosely A.B. Nichols; Huw V. Smith

The numerous published methods for extracting DNA from Cryptosporidium oocysts for PCR identify the lack of an optimized standard method for clinical, environmental, and public health investigations of cryptosporidiosis. A method that maximizes DNA extraction reliably, particularly from small numbers of partially purified or purified oocysts present in mineral waters and environmental samples, is required. We describe a maximized method for liberating DNA from Cryptosporidium parvum oocysts by 15 cycles of freezing (liquid nitrogen) and thawing (65 degrees C) in lysis buffer containing sodium dodecyl sulfate. The inhibitory effects of sodium dodecyl sulfate are abrogated by the addition of Tween 20 to the PCR reaction. We tested seven different C. parvum oocyst isolates, consistently detecting fewer than five oocysts following direct PCR amplification of a segment of the 18S rRNA gene. Older oocysts, which were more refractory to freeze-thawing, were disrupted effectively. A single oocyst in each of two mineral water concentrates was detected by both microscopy and PCR/Southern blotting. We recommend 15 cycles of freeze-thawing, with thawing at 65 degrees C in lysis buffer, to maximize oocyst disruption and DNA extraction, particularly when isolate history and oocyst age are unknown. Both the DNA extraction method and the PCR described can be used for clinical, environmental, and public health investigations of cryptosporidiosis.


Transactions of The Royal Society of Tropical Medicine and Hygiene | 2003

Incidence of Cryptosporidium species in paediatric patients in Malawi

T.D. Morse; Rosely A.B. Nichols; Anthony Grimason; K.C. Tembo; Huw V. Smith

We determined the incidence of cryptosporidiosis in children aged <5 years presenting with diarrhoea in an urban and rural hospital-based setting in Malawi. Stools were collected over a 22-month period during both rainy and dry seasons. A range of microscopic methods were used to determine the presence of Cryptosporidium spp. oocysts. Species determination was by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of oocyst-extracted DNA using 18S rRNA and COWP gene loci. Cryptosporidium spp. oocysts were seen in 5.9% (50/848) of samples, of which 43 amplified by PCR-RFLP indicated the following species: C. hominis, C. parvum, C. hominis/C. parvum, C. meleagridis and C. andersoni. Seven samples could not be amplified by PCR. Wider species diversity was found in the rural setting, and may be a result of increased malnutrition and zoonotic exposure in this area. Improvements in water, sanitation, household hygiene and animal control are required to reduce the incidence of infection in this population.


Trends in Parasitology | 2005

Cryptosporidium excystation and invasion: getting to the guts of the matter

Huw V. Smith; Rosely A.B. Nichols; Anthony Grimason


Journal of Microbiological Methods | 2006

A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigations.

Rosely A.B. Nichols; John E. Moore; Huw V. Smith

Collaboration


Dive into the Rosely A.B. Nichols's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Banda

University of Malawi

View shared research outputs
Top Co-Authors

Avatar

S. O. Asaolu

Obafemi Awolowo University

View shared research outputs
Researchain Logo
Decentralizing Knowledge