Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemary A. Wilkinson is active.

Publication


Featured researches published by Rosemary A. Wilkinson.


Nature Genetics | 2008

Multiple newly identified loci associated with prostate cancer susceptibility

Rosalind Eeles; Zsofia Kote-Jarai; Graham G. Giles; Ali Amin Al Olama; Michelle Guy; Sarah Jugurnauth; Shani Mulholland; Daniel Leongamornlert; Stephen M. Edwards; Jonathan Morrison; Helen I. Field; Melissa C. Southey; Gianluca Severi; Jenny Donovan; Freddie C. Hamdy; David P. Dearnaley; Kenneth Muir; Charmaine Smith; Melisa Bagnato; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Beatrice N. Gehr-Swain; Rosemary A. Wilkinson; Angie Cox; Sarah Lewis; Paul M. Brown; Sameer Jhavar; Malgorzata Tymrakiewicz; Artitaya Lophatananon

Prostate cancer is the most common cancer affecting males in developed countries. It shows consistent evidence of familial aggregation, but the causes of this aggregation are mostly unknown. To identify common alleles associated with prostate cancer risk, we conducted a genome-wide association study (GWAS) using blood DNA samples from 1,854 individuals with clinically detected prostate cancer diagnosed at ≤60 years or with a family history of disease, and 1,894 population-screened controls with a low prostate-specific antigen (PSA) concentration (<0.5 ng/ml). We analyzed these samples for 541,129 SNPs using the Illumina Infinium platform. Initial putative associations were confirmed using a further 3,268 cases and 3,366 controls. We identified seven loci associated with prostate cancer on chromosomes 3, 6, 7, 10, 11, 19 and X (P = 2.7 × 10−8 to P = 8.7 × 10−29). We confirmed previous reports of common loci associated with prostate cancer at 8q24 and 17q. Moreover, we found that three of the newly identified loci contain candidate susceptibility genes: MSMB, LMTK2 and KLK3.


Journal of the National Cancer Institute | 2008

Multiple Loci With Different Cancer Specificities Within the 8q24 Gene Desert

Maya Ghoussaini; Honglin Song; Thibaud Koessler; Ali Amin Al Olama; Zsofia Kote-Jarai; Kristy Driver; Karen A. Pooley; Susan J. Ramus; Susanne K. Kjaer; Estrid Høgdall; Richard A. DiCioccio; Alice S. Whittemore; Simon A. Gayther; Graham G. Giles; Michelle Guy; Stephen M. Edwards; Jonathan Morrison; Jenny Donovan; Freddie C. Hamdy; David P. Dearnaley; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Beatrice N. Gehr-Swain; Rosemary A. Wilkinson; Paul M. Brown; John L. Hopper; David E. Neal; Paul Pharoah; Bruce A.J. Ponder

Recent studies based on genome-wide association, linkage, and admixture scan analysis have reported associations of various genetic variants in 8q24 with susceptibility to breast, prostate, and colorectal cancer. This locus lies within a 1.18-Mb region that contains no known genes but is bounded at its centromeric end by FAM84B and at its telomeric end by c-MYC, two candidate cancer susceptibility genes. To investigate the associations of specific loci within 8q24 with specific cancers, we genotyped the nine previously reported cancer-associated single-nucleotide polymorphisms across the region in four case-control sets of prostate (1854 case subjects and 1894 control subjects), breast (2270 case subjects and 2280 control subjects), colorectal (2299 case subjects and 2284 control subjects), and ovarian (1975 case subjects and 3411 control subjects) cancer. Five different haplotype blocks within this gene desert were specifically associated with risks of different cancers. One block was solely associated with risk of breast cancer, three others were associated solely with the risk of prostate cancer, and a fifth was associated with the risk of prostate, colorectal, and ovarian cancer, but not breast cancer. We conclude that there are at least five separate functional variants in this region.


Nature Genetics | 2009

Multiple loci on 8q24 associated with prostate cancer susceptibility

Ali Amin Al Olama; Zsofia Kote-Jarai; Graham G. Giles; Michelle Guy; Jonathan Morrison; Gianluca Severi; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Sameer Jhavar; Ed Saunders; John L. Hopper; Melissa C. Southey; Kenneth Muir; Dallas R. English; David P. Dearnaley; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Rosemary A. Wilkinson; Emma J. Sawyer; Artitaya Lophatananon; Uk Prostate testing for cancer; A. Horwich; Robert Huddart; Vincent Khoo; Chris Parker; Christopher Woodhouse; Alan Thompson; Tim Christmas; Chris Ogden

Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 × 10−8; rs620861: OR = 0.90, P = 4.8 × 10−8). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility.


Journal of Clinical Oncology | 2013

Germline BRCA Mutations Are Associated With Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer

Elena Castro; Chee Goh; David Olmos; Ed Saunders; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Nadiya Mahmud; Tokhir Dadaev; Koveela Govindasami; Michelle Guy; Emma J. Sawyer; Rosemary A. Wilkinson; Audrey Ardern-Jones; Steve Ellis; Debra Frost; Susan Peock; D. Gareth Evans; Marc Tischkowitz; Trevor Cole; Rosemarie Davidson; Diana Eccles; Carole Brewer; Fiona Douglas; Mary Porteous; Alan Donaldson; Huw Dorkins; Louise Izatt; Jackie Cook; Shirley Hodgson; M. John Kennedy

PURPOSE To analyze the baseline clinicopathologic characteristics of prostate tumors with germline BRCA1 and BRCA2 (BRCA1/2) mutations and the prognostic value of those mutations on prostate cancer (PCa) outcomes. PATIENTS AND METHODS This study analyzed the tumor features and outcomes of 2,019 patients with PCa (18 BRCA1 carriers, 61 BRCA2 carriers, and 1,940 noncarriers). The Kaplan-Meier method and Cox regression analysis were used to evaluate the associations between BRCA1/2 status and other PCa prognostic factors with overall survival (OS), cause-specific OS (CSS), CSS in localized PCa (CSS_M0), metastasis-free survival (MFS), and CSS from metastasis (CSS_M1). RESULTS PCa with germline BRCA1/2 mutations were more frequently associated with Gleason ≥ 8 (P = .00003), T3/T4 stage (P = .003), nodal involvement (P = .00005), and metastases at diagnosis (P = .005) than PCa in noncarriers. CSS was significantly longer in noncarriers than in carriers (15.7 v 8.6 years, multivariable analyses [MVA] P = .015; hazard ratio [HR] = 1.8). For localized PCa, 5-year CSS and MFS were significantly higher in noncarriers (96% v 82%; MVA P = .01; HR = 2.6%; and 93% v 77%; MVA P = .009; HR = 2.7, respectively). Subgroup analyses confirmed the poor outcomes in BRCA2 patients, whereas the role of BRCA1 was not well defined due to the limited size and follow-up in this subgroup. CONCLUSION Our results confirm that BRCA1/2 mutations confer a more aggressive PCa phenotype with a higher probability of nodal involvement and distant metastasis. BRCA mutations are associated with poor survival outcomes and this should be considered for tailoring clinical management of these patients.


British Journal of Cancer | 2011

BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients

Zsofia Kote-Jarai; Daniel Leongamornlert; Ed Saunders; Malgorzata Tymrakiewicz; Elena Castro; Nadiya Mahmud; Michelle Guy; S M Edwards; Lynne T. O'Brien; Emma J. Sawyer; A. S. Hall; Rosemary A. Wilkinson; Tokhir Dadaev; Chee Leng Goh; D.F. Easton; David E. Goldgar; Rosalind Eeles

Background:A family history of prostate cancer (PrCa) is a strong risk factor for the disease, indicating that inherited factors are important in this disease. We previously estimated that about 2% of PrCa cases diagnosed ⩽55 years harbour a BRCA2 mutation and PrCa among BRCA2 carriers has been shown to be more aggressive, with poorer survival.Methods:To further evaluate the role of BRCA2 in PrCa predisposition, we screened 1864 men with PrCa aged between 36 and 88 years. We analysed the BRCA2 gene using a novel high-throughput multiplex fluorescence heteroduplex detection system developed for the ABI3130xl genetic analyzer.Results:We identified 19 protein-truncating mutations, 3 in-frame deletions and 69 missense variants of uncertain significance (UV) in our sample set. All the carriers of truncating mutations developed PrCa at ⩽65 years, with a prevalence of BRCA2 mutation of 1.20% for cases in this age group.Conclusion:Based on the estimated frequency of BRCA2 mutations in the United Kingdom we estimate that germline mutations in the BRCA2 gene confer an ∼8.6-fold increased risk of PrCa by age 65, corresponding to an absolute risk of ∼15% by age 65. These results suggest that routine testing of early onset PrCa cases for germline BRCA2 mutations will further help to refine the prevalence and risk associated with BRCA2 mutations and may be useful for guiding management options.


British Journal of Cancer | 2012

Germline BRCA1 mutations increase prostate cancer risk

Daniel Leongamornlert; Nadiya Mahmud; Malgorzata Tymrakiewicz; Edward J. Saunders; Tokhir Dadaev; Elena Castro; Chee Leong Goh; Koveela Govindasami; Michelle Guy; Lynne T. O'Brien; Emma J. Sawyer; Amanda L. Hall; Rosemary A. Wilkinson; Douglas Easton; David E. Goldgar; Rosalind Eeles; Zsofia Kote-Jarai

Background:Prostate cancer (PrCa) is one of the most common cancers affecting men but its aetiology is poorly understood. Family history of PrCa, particularly at a young age, is a strong risk factor. There have been previous reports of increased PrCa risk in male BRCA1 mutation carriers in female breast cancer families, but there is a controversy as to whether this risk is substantiated. We sought to evaluate the role of germline BRCA1 mutations in PrCa predisposition by performing a candidate gene study in a large UK population sample set.Methods:We screened 913 cases aged 36–86 years for germline BRCA1 mutation, with the study enriched for cases with an early age of onset. We analysed the entire coding region of the BRCA1 gene using Sanger sequencing. Multiplex ligation-dependent probe amplification was also used to assess the frequency of large rearrangements in 460 cases.Results:We identified 4 deleterious mutations and 45 unclassified variants (UV). The frequency of deleterious BRCA1 mutation in this study is 0.45%; three of the mutation carriers were affected at age ⩽65 years and one developed PrCa at 69 years. Using previously estimated population carrier frequencies, deleterious BRCA1 mutations confer a relative risk of PrCa of ∼3.75-fold, (95% confidence interval 1.02–9.6) translating to a 8.6% cumulative risk by age 65.ConclusionThis study shows evidence for an increased risk of PrCa in men who harbour germline mutations in BRCA1. This could have a significant impact on possible screening strategies and targeted treatments.


Human Molecular Genetics | 2013

Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

Zsofia Kote-Jarai; Edward J. Saunders; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Tokhir Dadaev; Sarah Jugurn-Little; Helen Ross-Adams; Ali Amin Al Olama; Sara Benlloch; Silvia Halim; Roslin Russel; Alison M. Dunning; Craig Luccarini; Joe Dennis; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Kenneth Muir; Graham G. Giles; Gianluca Severi; Fredrik Wiklund; Henrik Grönberg; Christopher A. Haiman; Fredrick R. Schumacher; Brian E. Henderson; Loic Le Marchand; Sara Lindström; Peter Kraft; David J. Hunter; Susan M. Gapstur

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.


British Journal of Cancer | 2010

Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis

S M Edwards; D G R Evans; Questa Hope; A. Norman; Yolanda Barbachano; Sarah Bullock; Zsofia Kote-Jarai; Julia Meitz; Alison Falconer; Peter Osin; Cyril Fisher; Michelle Guy; Sameer Jhavar; Amanda L. Hall; Lynne T. O'Brien; Beatrice N. Gehr-Swain; Rosemary A. Wilkinson; M S Forrest; David P. Dearnaley; Audrey Ardern-Jones; Elizabeth Page; Doug Easton; Rosalind Eeles

Background:The germline BRCA2 mutation is associated with increased prostate cancer (PrCa) risk. We have assessed survival in young PrCa cases with a germline mutation in BRCA2 and investigated loss of heterozygosity at BRCA2 in their tumours.Methods:Two cohorts were compared: one was a group with young-onset PrCa, tested for germline BRCA2 mutations (6 of 263 cases had a germline BRAC2 mutation), and the second was a validation set consisting of a clinical set from Manchester of known BRCA2 mutuation carriers (15 cases) with PrCa. Survival data were compared with a control series of patients in a single clinic as determined by Kaplan–Meier estimates. Loss of heterozygosity was tested for in the DNA of tumour tissue of the young-onset group by typing four microsatellite markers that flanked the BRCA2 gene, followed by sequencing.Results:Median survival of all PrCa cases with a germline BRCA2 mutation was shorter at 4.8 years than was survival in controls at 8.5 years (P=0.002). Loss of heterozygosity was found in the majority of tumours of BRCA2 mutation carriers. Multivariate analysis confirmed that the poorer survival of PrCa in BRCA2 mutation carriers is associated with the germline BRCA2 mutation per se.Conclusion:BRCA2 germline mutation is an independent prognostic factor for survival in PrCa. Such patients should not be managed with active surveillance as they have more aggressive disease.


Genetic Epidemiology | 2011

A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact.

Robert J. MacInnis; Antonis C. Antoniou; Rosalind Eeles; Gianluca Severi; Ali Amin Al Olama; Lesley McGuffog; Zsofia Kote-Jarai; Michelle Guy; Lynne T. O'Brien; Amanda L. Hall; Rosemary A. Wilkinson; Emma J. Sawyer; Audrey Ardern-Jones; David P. Dearnaley; A. Horwich; Vincent Khoo; Chris Parker; Robert Huddart; Nicholas Van As; Margaret McCredie; Dallas R. English; Graham G. Giles; John L. Hopper; Douglas F. Easton

Genome wide association studies have identified several single nucleotide polymorphisms (SNPs) that are independently associated with small increments in risk of prostate cancer, opening up the possibility for using such variants in risk prediction. Using segregation analysis of population‐based samples of 4,390 families of prostate cancer patients from the UK and Australia, and assuming all familial aggregation has genetic causes, we previously found that the best model for the genetic susceptibility to prostate cancer was a mixed model of inheritance that included both a recessive major gene component and a polygenic component (P) that represents the effect of a large number of genetic variants each of small effect, where . Based on published studies of 26 SNPs that are currently known to be associated with prostate cancer, we have extended our model to incorporate these SNPs by decomposing the polygenic component into two parts: a polygenic component due to the known susceptibility SNPs, , and the residual polygenic component due to the postulated but as yet unknown genetic variants, . The resulting algorithm can be used for predicting the probability of developing prostate cancer in the future based on both SNP profiles and explicit family history information. This approach can be applied to other diseases for which population‐based family data and established risk variants exist. Genet. Epidemiol. 2011.


British Journal of Cancer | 2011

Hand pattern indicates prostate cancer risk

Aneela A. Rahman; Artitaya Lophatananon; Sarah Stewart-Brown; D. Harriss; John Anderson; Terence Parker; Douglas F. Easton; Zsofia Kote-Jarai; Richard Pocock; David P. Dearnaley; Michelle Guy; Lynne T. O'Brien; Rosemary A. Wilkinson; Amanda L. Hall; Elinor Sawyer; Elizabeth Page; Jo-Fen Liu; Rosalind Eeles; Kenneth Muir

Background:The ratio of digit lengths is fixed in utero, and may be a proxy indicator for prenatal testosterone levels.Methods:We analysed the right-hand pattern and prostate cancer risk in 1524 prostate cancer cases and 3044 population-based controls.Results:Compared with index finger shorter than ring finger (low 2D : 4D), men with index finger longer than ring finger (high 2D : 4D) showed a negative association, suggesting a protective effect with a 33% risk reduction (odds ratio (OR) 0.67, 95% confidence interval (CI) 0.57–0.80). Risk reduction was even greater (87%) in age group <60 (OR 0.13, 95% CI 0.09–0.21).Conclusion:Pattern of finger lengths may be a simple marker of prostate cancer risk, with length of 2D greater than 4D suggestive of lower risk.

Collaboration


Dive into the Rosemary A. Wilkinson's collaboration.

Top Co-Authors

Avatar

Michelle Guy

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Zsofia Kote-Jarai

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Rosalind Eeles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne T. O'Brien

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda L. Hall

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Emma J. Sawyer

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kenneth Muir

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge