Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemary B. Cornell is active.

Publication


Featured researches published by Rosemary B. Cornell.


Molecular Membrane Biology | 1999

Amphitropic proteins: regulation by reversible membrane interactions (Review)

Joanne E. Johnson; Rosemary B. Cornell

What do Src kinase, Ras-guanine nucleotide exchange factor, cytidylyltransferase, protein kinase C, phospholipase C, vinculin, and DnaA protein have in common? These proteins are amphitropic, that is, they bind weakly (reversibly) to membrane lipids, and this process regulates their function. Proteins functioning in transduction of signals generated in cell membranes are commonly regulated by amphitropism. In this review, the strategies utilized by amphitropic proteins to bind to membranes and to regulate their membrane affinity are described. The recently solved structures of binding pockets for specific lipids are described, as well as the amphipathic alpha-helix motif. Regulatory switches that control membrane affinity include modulation of the membrane lipid composition, and modification of the protein itself by ligand binding, phosphorylation, or acylation. How does membrane binding modulate the proteins function? Two mechanisms are discussed: (1) localization with the substrate, activator, or downstream target, and (2) activation of the protein by a conformational switch. This paper also addresses the issue of specificity in the cell membrane targetted for binding.


Current Protein & Peptide Science | 2006

Amphipathic Helices as Mediators of the Membrane Interaction of Amphitropic Proteins, and as Modulators of Bilayer Physical Properties

Rosemary B. Cornell; Svetla G. Taneva

The amphipathic helix (AH) motif is used by a subset of amphitropic proteins to accomplish reversible and controlled association with the interfacial zone of membranes. Functioning as more than mere membrane anchoring domains, amphipathic helices can serve as autoinhibitory domains to suppress the protein activity in its soluble form, and as sensors or modulators of membrane curvature. Thus amphipathic helices can both respond to and modulate membrane physical properties. These and other features are illustrated by the behavior of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme in PC synthesis. A comparison of the physico-chemical features of CCTs AH motif and 10 others reveals similarities and several differences. The importance of these parameters to the particulars of the membrane interaction and to functional consequences requires more systematic exploration. The membrane partitioning of amphitropic proteins with AH motifs can be regulated by various strategies including changes in membrane lipid composition, phosphorylation, ligand-induced conformational changes, and membrane curvature. Several amphitropic proteins that control budding or tubule formation in cells have AH motifs. The insertion of the hydrophobic face of these amphipathic helices generates an asymmetry in the lateral pressure of the two leaflets resulting in an induction of positive curvature. Curvature induction or stabilization may be a universal property of AHA proteins, not just those involved in budding, but this possibility requires further demonstration.


Biochemistry | 1996

Structure of the membrane binding domain of CTP:phosphocholine cytidylyltransferase.

Simon J. Dunne; Rosemary B. Cornell; Joanne E. Johnson; Nicholas R. Glover; Alan S. Tracey

It has been proposed that the domain of the regulatory enzyme, CTP:phosphocholine cytidylyltransferase, which mediates reversible binding of the enzyme to membranes, is an amphipathic alpha-helix of approximately 60 amino acid residues and that this domain is adjacent to the putative active site domain of this enzyme. Circular dichroism indicated that the secondary structures of two overlapping peptides spanning this region were predominantly alpha-helical in the presence of PG vesicles or sodium dodecyl sulfate micelles. Interproton distances were obtained from two-dimensional NMR spectroscopic measurements to solve the structures of these two peptides. The C-terminal 22 amino acid peptide segment (corresponding to Val267-Ser288) was a well-defined alpha-helix over its length. The N-terminal 33-mer (corresponding to Asn236-Glu268) was composed of an alpha-helix from Glu243 to Lys266, a well-structured bend of about 50 degrees at Tyr240-His241-Leu242, and an N-terminal four-residue helix. It is proposed that the three residues involved in generating the bend act as the hinge between the catalytic and regulatory domains. The nonpolar faces of the 33-mer and 22-mer were interrupted by Ser260, Ser271, and Ser282. These residues may serve to limit the hydrophobicity and facilitate reversible and lipid-selective membrane binding. The hydrophobic faces of the helices were flanked by a set of basic amino acid residues on one side and basic amino acid residues interspersed with glutamates on the other. The disposition of these side chains gives clues to the basis for the specificities of these peptides for anionic surfaces.


Chemistry and Physics of Lipids | 1996

Modulation of the activities of enzymes of membrane lipid metabolism by non-bilayer-forming lipids

Rosemary B. Cornell; Rebecca S. Arnold

Abstract The activities of several enzymes which catalyze the synthesis or degradation of important lipid structural components of membranes are influenced by non-bilayer-forming lipids. We present and critique the hypothesis that enzymes that catalyze interconversions between bilayer- and non-bilayer-forming lipids are regulated by the lipid packing perturbations of the non-bilayer-forming component. The consequence of this regulation is lipid polymorphic homeostasis. The enzymes which are modulated by non-bilayer components of membranes include a diglucosyl diacylglycerol synthase from mycoplasma, secretory and cell-associated phospholipase A2s, phospholipase C, phosphocholine cytidylyltransferase, phosphatidate phosphohydrolase and diacylglycerol kinase. The effect of the non-lamellar lipids, both reversed phase-forming and micellar-forming, are discused in terms of bilayer packing strain, which can effect enzyme-membrane associations, and lateral domain formation, which can modulate the effective concentration of lipid activators.


Journal of Biological Chemistry | 2009

Crystal Structure of a Mammalian CTP: Phosphocholine Cytidylyltransferase Catalytic Domain Reveals Novel Active Site Residues within a Highly Conserved Nucleotidyltransferase Fold

Jaeyong Lee; Joanne E. Johnson; Ziwei Ding; Mark Paetzel; Rosemary B. Cornell

CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTα spanning residues 1–236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-Å structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the β-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.


Biochemical Journal | 2007

Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs

Joanne E. Johnson; Rebecca E. Goulding; Ziwei Ding; Amir Partovi; Kira V. Anthony; Nadine Beaulieu; Ghazaleh Tazmini; Rosemary B. Cornell; Robert J. Kay

RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.


Progress in Lipid Research | 2015

CTP:phosphocholine cytidylyltransferase: Function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis

Rosemary B. Cornell; Neale D. Ridgway

CTP:phosphocholine cytidylyltransferase (CCT) catalyzes a rate-limiting and regulated step in the CDP-choline pathway for the synthesis of phosphatidylcholine (PC) and PC-derived lipids. Control of CCT activity is multi-layered, and includes direct regulation by reversible membrane binding involving a built-in lipid compositional sensor. Thus CCT contributes to phospholipid compositional homeostasis. CCT also modifies the curvature of its target membrane. Knowledge of CCT structure and regulation of its catalytic function are relatively advanced compared to many lipid metabolic enzymes, and are reviewed in detail. Recently the genetic origins of two human developmental and lipogenesis disorders have been traced to mutations in the gene for CCTα.


Biochimica et Biophysica Acta | 1997

An amphipathic α-helix is the principle membrane-embedded region of CTP:phosphocholine cytidylyltransferase. Identification of the 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine photolabeled domain

Joanne E. Johnson; Ruedi Aebersold; Rosemary B. Cornell

CTP:phosphocholine cytidylyltransferase (CT), the rate controlling enzyme in phosphatidylcholine biosynthesis, is activated by reversible membrane binding. To investigate the membrane binding mechanism of CT, we have used the photoreactive hydrophobic probe 3-(trifluoromethyl)-3-(m-[l25I]iodophenyl)diazirine ([125I]TID). Association of CT with phosphatidylcholine/oleic acid (1:1) vesicles was first demonstrated by gel filtration analysis. Upon irradiation, CT was covalently labeled by [125I]TID presented in phosphatidylcholine/oleic acid vesicles. This demonstrates an intercalation of part of the protein into the hydrophobic core of the membrane. To identify the membrane-embedded domain, the chymotrypsin digestion products of [125I]TID labeled CT were analysed. Chymotrypsin digestion produced a set of previously defined N-terminal fragments (Craig, L., Johnson, J.E. and Cornell, R.B. (1994) J. Biol. Chem. 269, 3311), as well as several small C-terminal fragments which react with an anti-peptide antibody raised against the proposed amphipathic alpha-helix. All fragments containing the amphipathic helical region of the enzyme had [125I]TID label associated, while the chymotryptic fragment which lacked this region was not highly labeled. Similar fragment labeling patterns were produced when [125I]TID was presented in phosphatidylcholine/oleic acid or phosphatidylcholine/diacylglycerol vesicles, suggesting that the same domain of CT mediates binding to membranes containing either of the two lipid activators. A 62-residue synthetic peptide corresponding in sequence to the amphipathic helical region of CT was labeled with [125I]TID, demonstrating its ability to intercalate independently of the rest of the protein. These results indicate a membrane-binding mechanism for cytidylyltransferase involving the intercalation of the amphipathic alpha-helix region into the hydrophobic acyl chain core of the activating membrane.


Journal of Biological Chemistry | 2008

Contribution of Each Membrane Binding Domain of the CTP:Phosphocholine Cytidylyltransferase-α Dimer to Its Activation, Membrane Binding, and Membrane Cross-bridging

Svetla G. Taneva; Melissa K. Dennis; Ziwei Ding; Jillian L. Smith; Rosemary B. Cornell

CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the fulllength homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.


Biochimica et Biophysica Acta | 2016

Membrane lipid compositional sensing by the inducible amphipathic helix of CCT

Rosemary B. Cornell

The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

Collaboration


Dive into the Rosemary B. Cornell's collaboration.

Top Co-Authors

Avatar

Svetla G. Taneva

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Jaeyong Lee

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziwei Ding

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Kay

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge