Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemary J. Akhurst is active.

Publication


Featured researches published by Rosemary J. Akhurst.


Nature Genetics | 2001

TGF-|[beta]| signaling in tumor suppression and cancer progression

Rik Derynck; Rosemary J. Akhurst; Allan Balmain

Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor β (TGF-β) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-β on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-β signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-β in tumor development and attempt to reconcile the positive and negative effects of TGF-β in carcinogenesis.


Trends in Cell Biology | 2001

TGF-β signaling in cancer — a double-edged sword

Rosemary J. Akhurst; Rik Derynck

Transforming growth factor (TGF) β1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-β signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-β1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-β-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.


Cell | 1996

TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice

Wei Cui; Fowlis Dj; Sheila Bryson; Elizabeth Duffie; Hazel Ireland; Allan Balmain; Rosemary J. Akhurst

TGFbeta1 has been implicated in cell cycle control and carcinogenesis. To address the exact function of TGFbeta1 in skin carcinogenesis in vivo, mice with TGFbeta1 expression targeted to keratinocytes were subjected to long-term chemical carcinogenesis treatment. TGFbeta1 showed biphasic action during multistage skin carcinogenesis, acting early as a tumor suppressor but later enhancing the malignant phenotype. The transgenics were more resistant to induction of benign skin tumors than controls, but the malignant conversion rate was vastly increased. There was also a higher incidence of spindle cell carcinomas, which expressed high levels of endogenous TGFbeta3, suggesting that TGFbeta1 elicits an epithelial-mesenchymal transition in vivo and that TGFbeta3 might be involved in maintenance of the spindle cell phenotype. The action of TGFbeta1 in enhancing malignant progression may mimic its proposed function in modulating epithelial cell plasticity during embryonic development.


Nature Cell Biology | 2002

Metastasis is driven by sequential elevation of H-ras and Smad2 levels.

Martin Oft; Rosemary J. Akhurst; Allan Balmain

Metastasis is a multistep process that involves local tumour invasion followed by dissemination to, and re-establishment at, distant sites. Here we show that during multistage tumorigenesis, discrete expression thresholds of activated Smad2 and H-ras are sequentially surpassed, driving tumour progression through distinct phases from a differentiated squamous carcinoma to a motile invasive stage, followed by an overt change from epithelial to mesenchymal cell type, finally culminating in metastatic tumour spread. Smad2 activation alone induces migration of tumour cells. Elevated H-ras levels, however, are required for nuclear accumulation of Smad2, both of which are essential for the epithelial–mesenchymal transition (EMT). Having undergone EMT, fibroblastoid carcinoma cells with elevated levels of activated Smad2, gain the capability to spread to a wide variety of tissues by a further increase in Smad2 expression. These findings have far-reaching implications for the prevention of tumour growth, invasion and metastasis.


International Journal of Biological Sciences | 2012

Complexities of TGF-β Targeted Cancer Therapy

Erin C. Connolly; Julia Freimuth; Rosemary J. Akhurst

Many advanced tumors produce excessive amounts of Transforming Growth Factor-β (TGF-β) which, in normal epithelial cells, is a potent growth inhibitor. However, in oncogenically activated cells, the homeostatic action of TGF-β is often diverted along alternative pathways. Hence, TGF-β signaling elicits protective or tumor suppressive effects during the early growth-sensitive stages of tumorigenesis. However, later in tumor development when carcinoma cells become refractory to TGF-β-mediated growth inhibition, the tumor cell responds by stimulating pathways with tumor progressing effects. At late stages of malignancy, tumor progression is driven by TGF-β overload. The tumor microenvironment is a target of TGF-β action that stimulates tumor progression via pro-tumorigenic effects on vascular, immune, and fibroblastic cells. Bone is one of the richest sources of TGF-β in the body and a common site for dissemination of breast cancer metastases. Osteoclastic degradation of bone matrix, which accompanies establishment and growth of metastases, triggers further release of bone-derived TGF-β. This leads to a vicious positive feedback of tumor progression, driven by ever increasing levels of TGF-β released from both the tumor and bone matrix. It is for this reason, that pharmaceutical companies have developed therapeutic agents that block TGF-β signaling. Nonetheless, the choice of drug design and dosing strategy can affect the efficacy of TGF-β therapeutics. This review will describe pre-clinical and clinical data of four major classes of TGF-β inhibitor, namely i) ligand traps, ii) antisense oligonucleotides, iii) receptor kinase inhibitors and iv) peptide aptamers. Long term dosing strategies with TGF-β inhibitors may be ill-advised, since this class of drug has potentially highly pleiotropic activity, and development of drug resistance might potentiate tumor progression. Current paradigms for the use of TGF-β inhibitors in oncology have therefore moved towards the use of combinatorial therapies and short term dosing, with considerable promise for the clinic.


American Journal of Pathology | 2002

Latent transforming growth factor-β activation in mammary gland - Regulation by ovarian hormones affects ductal and alveolar proliferation

Kenneth Burnside Ramsay Ewan; G. Shyamala; Shradda A. Ravani; Yang Tang; Rosemary J. Akhurst; Lalage M. Wakefield; Mary Helen Barcellos-Hoff

Transforming growth factor-beta1 (TGF-beta 1) is a pluripotent cytokine that can inhibit epithelial proliferation and induce apoptosis, but is also widely implicated in breast cancer progression. Understanding its biological action in mammary development is critical for understanding its role in cancer. TGF-beta 1 is produced as a latent complex that requires extracellular activation before receptor binding. To better understand the spatial and temporal regulation of its action during mammary gland development, we examined the pattern of activation in situ using antibodies selected to distinguish between latent and active TGF-beta. Activation was highly restricted. TGF-beta 1 activation was localized primarily to the epithelium, and within the epithelium it was restricted to luminal epithelial cells but absent from either cap or myoepithelial cells. Within the luminal epithelium, we noted a further restriction. During periods of proliferation (ie, puberty, estrus and pregnancy), which are stimulated by ovarian hormones, TGF-beta 1 activation decreased in some cells, consistent with preparation for proliferation. Paradoxically, other cells simultaneously increase TGF-beta 1 immunoreactivity, which suggests that TGF-beta 1 differentially restrains epithelial subpopulations from responding to hormonal signals to proliferate. These data suggest that endogenous TGF-beta 1 activation and thus activity are regulated by ovarian hormones. To determine the specific consequences of TGF-beta 1 activity, we manipulated TGF-beta 1 levels in vivo using Tgfbeta 1 knockout mice and undertook tissue recombination experiments with heterozygous tissue. In Tgfbeta 1 heterozygous mice, which have <10% wild-type levels of TGF-beta1, ductal development during puberty and alveolar development during pregnancy were accelerated, consistent with its role as a growth inhibitor. The proliferative index of Tgfbeta 1+/- epithelium was increased approximately twofold in quiescent tissue and fourfold in proliferating tissue but both ducts and alveoli were grossly and histologically normal. To test whether epithelial TGF-beta1 was critical to the proliferative phenotype, Tgfbeta 1+/+ and +/- epithelium were transplanted into +/+ mammary stroma. The outgrowth of Tgfbeta 1+/- epithelium was accelerated in wild-type hosts, indicating that the phenotype was intrinsic to the epithelium. Moreover, proliferation was 15-fold greater in Tgfbeta 1+/- than wild-type mice after ovariectomy and treatment with estrogen and progesterone, suggesting that TGF-beta 1 acts in an autocrine or juxtacrine manner to regulate epithelial proliferation. Together these data indicate that ovarian hormones regulate TGF-beta 1 activation, which in turn restricts proliferative response to hormone signaling.


Breast Cancer Research | 2009

Transforming growth factor-β in breast cancer: too much, too late

Mary Helen Barcellos-Hoff; Rosemary J. Akhurst

The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition.


Nature Genetics | 2004

TGFβ signaling in health and disease

Rosemary J. Akhurst

Inactivating mutations in TGFBR2, encoding the transforming growth factor-β (TGFβ) type 2 receptor, may account for up to 10% of cases of Marfan syndrome. This finding has implications for a wider spectrum of disorders, including cancer, fibrosis and inflammatory and cardiovascular diseases, which are influenced by TGFβ.


Journal of Clinical Investigation | 2002

TGF-β antagonists: Why suppress a tumor suppressor?

Rosemary J. Akhurst

Tumor metastasis is the major determinant of cancer patient survival. This ultimate phase in tumorigenesis depends on the ability of a tumor cell to invade the stroma, migrate in and out of blood or lymphatic vessels, and survive and re-establish itself at a secondary site. A large number of papers have provided strong evidence for a role of TGF-β in tumor invasion and/or metastasis (1–6). Now, two papers in this issue of the JCI highlight this clinically significant action of TGF-β in tumorigenesis and provide very encouraging results regarding both the efficacy and the low toxicity of a soluble TGF-β receptor antagonist that effectively reduces tumor spread (7, 8).


Current Cancer Drug Targets | 2006

TGF Beta Inhibition for Cancer Therapy

Elise F. Saunier; Rosemary J. Akhurst

The importance of perturbation in transforming growth factor beta (TGFbeta) signaling for the onset and progression of cancer is well established. Many tumors over express TGFbeta, and high circulating levels of TGFbeta1 in cancer patients are frequently associated with poor prognosis. TGFbeta has context-dependent biphasic action during tumorigenesis. Because of this, it is essential to take due care about the selection of patients most likely to benefit from anti-TGFbeta therapy. Anti-TGFbeta therapy aims to target both the tumor cell and the tumor microenvironment and may well have systemic effects of relevance to tumorigenesis. Extra-tumoral targets include stromal fibroblasts, endothelial and pericyte cells during angiogenesis, and the local and systemic immune systems, all of which can contribute to the pro-oncogenic effects of TGFbeta. Many different approaches have been considered, such as interference with ligand synthesis using oligonucleotides, sequestration of extracellular ligand using naturally-occurring TGFbeta binding proteins, recombinant proteins or antibodies, targeting activation of latent TGFbeta at the cell surface, or signal transduction within the cell. Consideration of which patients might benefit most from anti-TGFbeta therapy should include not only tumor responses to TGFbeta (which depend on activation of other oncogenic pathways in the cancer cell), but also germline genetic variation between individuals. Ultimately, a deep understanding of the interacting networks of signal pathways that regulate TGFbeta outcome in tumor and host cells should allow judicial choice of drugs. This review discusses the progress made in the pre-clinical and clinical testing of TGFbeta inhibitors, and discusses considerations of target populations and potential drug regimens.

Collaboration


Dive into the Rosemary J. Akhurst's collaboration.

Top Co-Authors

Avatar

Allan Balmain

University of California

View shared research outputs
Top Co-Authors

Avatar

Rik Derynck

University of California

View shared research outputs
Top Co-Authors

Avatar

Fowlis Dj

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic F. Clermont

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minh Thu Luu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge