Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosemary Jane Holt is active.

Publication


Featured researches published by Rosemary Jane Holt.


Translational Psychiatry | 2011

A novel functional brain imaging endophenotype of autism: the neural response to facial expression of emotion

Spencer; Rosemary Jane Holt; Lr Chura; John Suckling; Andrew J. Calder; Edward T. Bullmore; Simon Baron-Cohen

Siblings of individuals with autism have over 20 times the population risk of autism. Evidence of comparable, but less marked, cognitive and social communication deficits in siblings suggests a role for these traits in the search for biomarkers of familial risk. However, no neuroimaging biomarkers of familial risk have been identified to date. Here we show, for the first time, that the neural response to facial expression of emotion differs between unaffected siblings and healthy controls with no family history of autism. Strikingly, the functional magnetic resonance imaging (fMRI) response to happy versus neutral faces was significantly reduced in unaffected siblings compared with controls within a number of brain areas implicated in empathy and face processing. The response in unaffected siblings did not differ significantly from the response in autism. Furthermore, investigation of the response to faces versus fixation crosses suggested that, within the context of this study, an atypical response specifically to happy faces, rather than to faces in general, accounts for the observed sibling versus controls difference and is a clear biomarker of familial risk. Our findings suggest that an atypical implicit response to facial expression of emotion may form the basis of impaired emotional reactivity in autism and in the broader autism phenotype in relatives. These results demonstrate that the fMRI response to facial expression of emotion is a candidate neuroimaging endophenotype for autism, and may offer far-reaching insights into the etiology of autism.


PLOS ONE | 2015

The “Reading the Mind in the Eyes” Test: Complete Absence of Typical Sex Difference in ~400 Men and Women with Autism

Simon Baron-Cohen; Daniel C Bowen; Rosemary Jane Holt; Catherine Allison; Bonnie Auyeung; Michael V. Lombardo; Paula Smith; Meng-Chuan Lai

The “Reading the Mind in the Eyes” test (Eyes test) is an advanced test of theory of mind. Typical sex difference has been reported (i.e., female advantage). Individuals with autism show more difficulty than do typically developing individuals, yet it remains unclear how this is modulated by sex, as females with autism have been under-represented. Here in a large, non-male-biased sample we test for the effects of sex, diagnosis, and their interaction. The Eyes test (revised version) was administered online to 395 adults with autism (178 males, 217 females) and 320 control adults (152 males, 168 females). Two-way ANOVA showed a significant sex-by-diagnosis interaction in total correct score (F(1,711) = 5.090, p = 0.024, ηp 2 = 0.007) arising from a significant sex difference between control males and females (p < 0.001, Cohen’s d = 0.47), and an absence of a sex difference between males and females with autism (p = 0.907, d = 0.01); significant case-control differences were observed across sexes, with effect sizes of d = 0.35 in males and d = 0.69 in females. Group-difference patterns fit with the extreme-male-brain (EMB) theory predictions. Eyes test-Empathy Quotient and Eyes test-Autism Spectrum Quotient correlations were significant only in females with autism (r = 0.35, r = -0.32, respectively), but not in the other 3 groups. Support vector machine (SVM) classification based on response pattern across all 36 items classified autism diagnosis with a relatively higher accuracy for females (72.2%) than males (65.8%). Nevertheless, an SVM model trained within one sex generalized equally well when applied to the other sex. Performance on the Eyes test is a sex-independent phenotypic characteristic of adults with autism, reflecting sex-common social difficulties, and provides support for the EMB theory predictions for both males and females. Performance of females with autism differed from same-sex controls more than did that of males with autism. Females with autism also showed stronger coherence between self-reported dispositional traits and Eyes test performance than all other groups.


Journal of Autism and Developmental Disorders | 2013

Psychological Correlates of Handedness and Corpus Callosum Asymmetry in Autism: The left Hemisphere Dysfunction Theory Revisited

Dorothea L. Floris; Lr Chura; Rosemary Jane Holt; John Suckling; Edward T. Bullmore; Simon Baron-Cohen; Michael D. Spencer

Rightward cerebral lateralization has been suggested to be involved in the neuropathology of autism spectrum conditions. We investigated functional and neuroanatomical asymmetry, in terms of handedness and corpus callosum measurements in male adolescents with autism, their unaffected siblings and controls, and their associations with executive dysfunction and symptom severity. Adolescents with autism did not differ from controls in functional asymmetry, but neuroanatomically showed the expected pattern of stronger rightward lateralization in the posterior and anterior midbody based on their hand-preference. Measures of symptom severity were related to rightward asymmetry in three subregions (splenium, posterior midbody and rostral body). We found the opposite pattern for the isthmus and rostrum with better cognitive and less severe clinical scores associated with rightward lateralization.


Brain | 2012

Atypical activation during the Embedded Figures Task as a functional magnetic resonance imaging endophenotype of autism.

Michael D. Spencer; Rosemary Jane Holt; Lr Chura; Andrew J. Calder; John Suckling; Edward T. Bullmore; Simon Baron-Cohen

Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal and frontal brain regions. Autism and sibling groups, however, did not differ in terms of activation during this task. This suggests that the pattern of atypical activation identified may represent a functional endophenotype of autism, related to familial risk for the condition shared between individuals with autism and their siblings. We also found that reduced activation in autism relative to control subjects in regions including associative visual and face processing areas was strongly correlated with the clinical severity of impairments in reciprocal social interaction. Behavioural performance was intact in autism and sibling groups. Results are discussed in terms of atypical information processing styles or of increased activation in temporal and frontal regions in autism and the broader phenotype. By separating the aspects of atypical activation as markers of familial risk for the condition from those that are autism-specific, our findings offer new insight into the factors that might cause the expression of autism in families, affecting some children but not others.


Molecular Autism | 2012

Failure to deactivate the default mode network indicates a possible endophenotype of autism.

Michael D. Spencer; Lr Chura; Rosemary Jane Holt; John Suckling; Andrew J. Calder; Edward T. Bullmore; Simon Baron-Cohen

BackgroundReduced activity during cognitively demanding tasks has been reported in the default mode network in typically developing controls and individuals with autism. However, no study has investigated the default mode network (DMN) in first-degree relatives of those with autism (such as siblings) and it is not known whether atypical activation of the DMN is specific to autism or whether it is also present in unaffected relatives. Here we use functional magnetic resonance imaging to investigate the pattern of task-related deactivation during completion of a visual search task, the Embedded Figures Task, in teenagers with autism, their unaffected siblings and typically developing controls.FindingsWe identified striking reductions in deactivation during the Embedded Figures Task in unaffected siblings compared to controls in brain regions corresponding to the default mode network. Adolescents with autism and their unaffected siblings similarly failed to deactivate regions, including posterior cingulate and bilateral inferior parietal cortex.ConclusionsThis suggests that a failure to deactivate these regions is a functional endophenotype of autism, related to familial risk for the condition shared between individuals with autism and their siblings.


NeuroImage: Clinical | 2015

Whole-brain functional hypoconnectivity as an endophenotype of autism in adolescents.

Rachel L. Moseley; Rjf Ypma; Rosemary Jane Holt; Dorothea L. Floris; Lr Chura; Michael D. Spencer; Simon Baron-Cohen; John Suckling; Edward T. Bullmore; Mikail Rubinov

Endophenotypes are heritable and quantifiable markers that may assist in the identification of the complex genetic underpinnings of psychiatric conditions. Here we examined global hypoconnectivity as an endophenotype of autism spectrum conditions (ASCs). We studied well-matched groups of adolescent males with autism, genetically-related siblings of individuals with autism, and typically-developing control participants. We parcellated the brain into 258 regions and used complex-network analysis to detect a robust hypoconnectivity endophenotype in our participant group. We observed that whole-brain functional connectivity was highest in controls, intermediate in siblings, and lowest in ASC, in task and rest conditions. We identified additional, local endophenotype effects in specific networks including the visual processing and default mode networks. Our analyses are the first to show that whole-brain functional hypoconnectivity is an endophenotype of autism in adolescence, and may thus underlie the heritable similarities seen in adolescents with ASC and their relatives.


NeuroImage | 2016

Improving effect size estimation and statistical power with multi-echo fMRI and its impact on understanding the neural systems supporting mentalizing

Michael V. Lombardo; Bonnie Auyeung; Rosemary Jane Holt; Jack Waldman; Amber N. V. Ruigrok; Natasha Mooney; Edward T. Bullmore; Simon Baron-Cohen; Prantik Kundu

Functional magnetic resonance imaging (fMRI) research is routinely criticized for being statistically underpowered due to characteristically small sample sizes and much larger sample sizes are being increasingly recommended. Additionally, various sources of artifact inherent in fMRI data can have detrimental impact on effect size estimates and statistical power. Here we show how specific removal of non-BOLD artifacts can improve effect size estimation and statistical power in task-fMRI contexts, with particular application to the social-cognitive domain of mentalizing/theory of mind. Non-BOLD variability identification and removal is achieved in a biophysical and statistically principled manner by combining multi-echo fMRI acquisition and independent components analysis (ME-ICA). Without smoothing, group-level effect size estimates on two different mentalizing tasks were enhanced by ME-ICA at a median rate of 24% in regions canonically associated with mentalizing, while much more substantial boosts (40–149%) were observed in non-canonical cerebellar areas. Effect size boosting occurs via reduction of non-BOLD noise at the subject-level and consequent reductions in between-subject variance at the group-level. Smoothing can attenuate ME-ICA-related effect size improvements in certain circumstances. Power simulations demonstrate that ME-ICA-related effect size enhancements enable much higher-powered studies at traditional sample sizes. Cerebellar effects observed after applying ME-ICA may be unobservable with conventional imaging at traditional sample sizes. Thus, ME-ICA allows for principled design-agnostic non-BOLD artifact removal that can substantially improve effect size estimates and statistical power in task-fMRI contexts. ME-ICA could mitigate some issues regarding statistical power in fMRI studies and enable novel discovery of aspects of brain organization that are currently under-appreciated and not well understood.


Frontiers in Computational Neuroscience | 2014

Identifying endophenotypes of autism: a multivariate approach.

Fermín Segovia; Rosemary Jane Holt; Michael D. Spencer; Juan Manuel Górriz; Javier Ramírez; Carlos García Puntonet; Christophe Phillips; Lr Chura; Simon Baron-Cohen; John Suckling

The existence of an endophenotype of autism spectrum condition (ASC) has been recently suggested by several commentators. It can be estimated by finding differences between controls and people with ASC that are also present when comparing controls and the unaffected siblings of ASC individuals. In this work, we used a multivariate methodology applied on magnetic resonance images to look for such differences. The proposed procedure consists of combining a searchlight approach and a support vector machine classifier to identify the differences between three groups of participants in pairwise comparisons: controls, people with ASC and their unaffected siblings. Then we compared those differences selecting spatially collocated as candidate endophenotypes of ASC.


Molecular Autism | 2017

The EU-AIMS Longitudinal European Autism Project (LEAP): Design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders

Eva Loth; Tony Charman; Luke Mason; Julian Tillmann; Emily J.H. Jones; Caroline Wooldridge; Jumana Ahmad; Bonnie Auyeung; Claudia Brogna; Sara Ambrosino; Tobias Banaschewski; Simon Baron-Cohen; Sarah Baumeister; Christian F. Beckmann; Michael Brammer; Daniel Brandeis; Sven Bölte; Thomas Bourgeron; Carsten Bours; Yvette de Bruijn; Bhismadev Chakrabarti; Daisy Crawley; Ineke Cornelissen; Flavio Dell’Acqua; Guillaume Dumas; Sarah Durston; Christine Ecker; Jessica Faulkner; Vincent Frouin; Pilar Garces

BackgroundThe tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD.MethodsLEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability.ResultsHere, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some ‘lessons learnt’. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted).ConclusionWe expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies.


Scientific Reports | 2016

Unsupervised data-driven stratification of mentalizing heterogeneity in autism

Michael V. Lombardo; Meng-Chuan Lai; Bonnie Auyeung; Rosemary Jane Holt; Catherine Allison; Paula Smith; Bhismadev Chakrabarti; Amber Nv Ruigrok; John Suckling; Edward T. Bullmore; Christine Ecker; Michael Craig; Declan Murphy; Francesca Happé; Simon Baron-Cohen

Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45–62% of ASC adults show evidence for large impairments (Cohen’s d = −1.03 to −11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.

Collaboration


Dive into the Rosemary Jane Holt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lr Chura

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Graham

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge