Rosemeire M. Kanashiro-Takeuchi
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosemeire M. Kanashiro-Takeuchi.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Konstantinos E. Hatzistergos; Lauro M. Takeuchi; D Saur; Barbara Seidler; Susan M. Dymecki; Jia Jia Mai; Ian A. White; Wayne Balkan; Rosemeire M. Kanashiro-Takeuchi; Andrew V. Schally; Joshua M. Hare
Significance A high-resolution genetic lineage-tracing study in mice reveals that cKit identifies multipotent progenitors of cardiac neural crest (CNC) origin. Normally, the proportion of cardiomyocytes produced from this lineage is limited, not because of poor differentiation capacity as previously thought, but because of stage-specific changes in the activity of the bone morphogenetic protein pathway. Transient bone morphogenetic protein antagonism efficiently directs mouse iPSCs toward the CNC lineage and, consequently, the generation of cKit+ CNCs with full capacity to form cardiomyocytes and other CNC derivatives in vitro. These findings resolve a long-standing controversy regarding the role of cKit in the heart, and are expected to lead to the development of novel stem cell-based therapies for the prevention and treatment of cardiovascular disease. The degree to which cKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches with cKitCreERT2/+ and Wnt1::Flpe mouse lines, we show that cKit delineates cardiac neural crest progenitors (CNCkit). CNCkit possess full cardiomyogenic capacity and contribute to all CNC derivatives, including cardiac conduction system cells. Furthermore, by modeling cardiogenesis in cKitCreERT2-induced pluripotent stem cells, we show that, paradoxically, the cardiogenic fate of CNCkit is regulated by bone morphogenetic protein antagonism, a signaling pathway activated transiently during establishment of the cardiac crescent, and extinguished from the heart before CNC invasion. Together, these findings elucidate the origin of cKit+ cardiac progenitors and suggest that a nonpermissive cardiac milieu, rather than minimal cardiomyogenic capacity, controls the degree of CNCkit contribution to myocardium.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Rosemeire M. Kanashiro-Takeuchi; Lauro M. Takeuchi; Ferenc G. Rick; Raul A. Dulce; Adriana V. Treuer; Victoria Florea; Claudia O. Rodrigues; Ellena C. Paulino; Konstantinos E. Hatzistergos; Sarah M. Selem; Daniel R. Gonzalez; Norman L. Block; Andrew V. Schally; Joshua M. Hare
Both cardiac myocytes and cardiac stem cells (CSCs) express the receptor of growth hormone releasing hormone (GHRH), activation of which improves injury responses after myocardial infarction (MI). Here we show that a GHRH-agonist (GHRH-A; JI-38) reverses ventricular remodeling and enhances functional recovery in the setting of chronic MI. This response is mediated entirely by activation of GHRH receptor (GHRHR), as demonstrated by the use of a highly selective GHRH antagonist (MIA-602). One month after MI, animals were randomly assigned to receive: placebo, GHRH-A (JI-38), rat recombinant GH, MIA-602, or a combination of GHRH-A and MIA-602, for a 4-wk period. We assessed cardiac performance and hemodynamics by using echocardiography and micromanometry derived pressure-volume loops. Morphometric measurements were carried out to determine MI size and capillary density, and the expression of GHRHR was assessed by immunofluorescence and quantitative RT-PCR. GHRH-A markedly improved cardiac function as shown by echocardiographic and hemodynamic parameters. MI size was substantially reduced, whereas myocyte and nonmyocyte mitosis was markedly increased by GHRH-A. These effects occurred without increases in circulating levels of growth hormone and insulin-like growth factor I and were, at least partially, nullified by GHRH antagonism, confirming a receptor-mediated mechanism. GHRH-A stimulated CSCs proliferation ex vivo, in a manner offset by MIA-602. Collectively, our findings reveal the importance of the GHRH signaling pathway within the heart. Therapy with GHRH-A although initiated 1 mo after MI substantially improved cardiac performance and reduced infarct size, suggesting a regenerative process. Therefore, activation of GHRHR provides a unique therapeutic approach to reverse remodeling after MI.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Chen Ching Yuan; Priya Muthu; Katarzyna Kazmierczak; Jingsheng Liang; Wenrui Huang; Thomas C. Irving; Rosemeire M. Kanashiro-Takeuchi; Joshua M. Hare; Danuta Szczesna-Cordary
Significance Genetic hypertrophic cardiomyopathy (HCM) is a debilitating disease affecting 1 in 500 of the general population, and there is no effective therapy to reverse or prevent its development and/or progression to heart failure. To inhibit a detrimental HCM phenotype induced by the D166V mutation of cardiac myosin regulatory light chain (RLC) in mice that also show reduced phosphorylation of endogenous cardiac RLC, constitutively phosphorylated D166V mutant mice were produced and tested. Our in-depth investigation of heart morphology, structure, and function of S15D-D166V mice provided evidence for the pseudophosphorylation-elicited prevention of the progressive HCM-D166V phenotype. This study is significant for the field of HCM, and our findings may constitute a novel therapeutic modality to battle hypertrophic cardiomyopathy associated with RLC mutations. Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 →Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca2+ sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Clinical and Translational Science | 2009
Rosemeire M. Kanashiro-Takeuchi; Bettina Heidecker; Guillaume Lamirault; Jennifer W. Dharamsi; Joshua M. Hare
Aldosterone receptor antagonism reduces mortality and improves post‐myocardial infarction (Ml) remodeling. Because aldosterone and estrogen signaling pathways interact, we hypothesized that aldosterone blockade is sex‐specific. Therefore, we investigated the mpact of eplerenone on left ventricular (LV) remodeling and gene expression of male infarcted rats versus female infarcted rats. Ml and Sham animals were randomized to receive eplerenone (100 mg/kg/day) or placebo 3 days post‐surgery for 4 weeks and assessed by echocardiography. In the Ml placebo group, left ventricular end‐diastolic dimension (LVEDD) increased from 7.3 ± 0.4 mm to 10.2 ± 1.0 mm (p < 0.05) and ejection fraction (EF) decreased from 82.3 + 4% to 45.5 + 11% (p < 0.05) in both sexes (p= NS between groups). Eplerenone attenuated LVEDD enlargement more effectively in females (8.8 ± 0.2 mm, p < 0.05 vs. placebo) than in males (9.7 ± 0.2 mm, p= NS vs. placebo) and improved EF in females (56.7 ± 3%, p < 0.05 vs. placebo) but not in males (50.6 + 3%, p= NS vs. placebo). Transcriptomic analysis using Rat_230–2.0 microarrays (Affymetrix) revealed that in females 19% of downregu‐lated genes and 44% of upregulated genes post‐MI were restored to normal by eplerenone. In contrast, eplerenone only restored 4% of overexpressed genes in males. Together, these data suggest that aldosterone blockade reduces Ml‐induced cardiac remodeling and phenotypic alterations of gene expression preferentially in females than in males. The use of transcriptomic signatures to detect greater benefit of eplerenone in females has potential implications for personalized medicine.
Stem Cells | 2013
Érika B. Rangel; Samirah Abreu Gomes; Raul A. Dulce; Courtney Premer; Claudia O. Rodrigues; Rosemeire M. Kanashiro-Takeuchi; Behzad Oskouei; Decio Carvalho; Phillip Ruiz; Jochen Reiser; Joshua M. Hare
The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive. Here, we identify a neonatal kidney‐derived c‐kit+ cell population that fulfills all of the criteria as a stem cell. These cells were found in the thick ascending limb of Henles loop and exhibited clonogenicity, self‐renewal, and multipotentiality with differentiation capacity into mesoderm and ectoderm progeny. Additionally, c‐kit+ cells formed spheres in nonadherent conditions when plated at clonal density and expressed markers of stem cells, progenitors, and differentiated cells. Ex vivo expanded c‐kit+ cells integrated into several compartments of the kidney, including tubules, vessels, and glomeruli, and contributed to functional and morphological improvement of the kidney following acute ischemia‐reperfusion injury in rats. Together, these findings document a novel neonatal rat kidney c‐kit+ stem cell population that can be isolated, expanded, cloned, differentiated, and used for kidney repair following acute kidney injury. These cells have important biological and therapeutic implications. STEM Cells 2013;31:1644–1656
Proceedings of the National Academy of Sciences of the United States of America | 2014
Victoria Florea; Sonia S Majid; Rosemeire M. Kanashiro-Takeuchi; Ren Zhi Cai; Norman L. Block; Andrew V. Schally; Joshua M. Hare; Claudia O. Rodrigues
Significance Stem cell therapy is an emerging approach to the treatment of heart failure. Endogenous or transplanted stem cells have limited repair capacity due to damage by exposure to stress. Agonists of growth hormone-releasing hormone receptor (GHRH-R) have been previously shown to increase the number of endogenous cardiac stem cells (CSCs) after myocardial infarction; enhance vasculogenesis of mesenchymal stem cells; and improve growth, engraftment, and survival of transplanted pancreatic islets in experimental models. This study shows that CSCs isolated from different species express GHRH-R and agonists of GHRH-R stimulate their proliferation and survival. Our findings support the potential use of GHRH agonists for endogenous stem cell stimulation and preconditioning prior to transplantation to improve CSC mobilization, survival, and probably enhancement of their angiomyogenic potential in the infarcted myocardium. The beneficial effects of agonists of growth hormone-releasing hormone receptor (GHRH-R) in heart failure models are associated with an increase in the number of ckit+ cardiac stem cells (CSCs). The goal of the present study was to determine the presence of GHRH-R in CSCs, the effect of GHRH-R agonists on their proliferation and survival, and the mechanisms involved. We investigated the expression of GHRH-R in CSCs of different species and the effect of GHRH-R agonists on their cell proliferation and survival. GHRH-R is expressed in ckit+ CSCs isolated from mouse, rat, and pig. Treatment of porcine CSCs with the GHRH-R agonist JI-38 significantly increased the rate of cell division. Similar results were observed with other GHRH-R agonists, MR-356 and MR-409. JI-38 exerted a protective effect on survival of porcine CSCs under conditions of oxidative stress induced by exposure to hydrogen peroxide. Treatment with JI-38 before exposure to peroxide significantly reduced cell death. A similar effect was observed with MR-356. Addition of GHRH-R agonists to porcine CSCs induced activation of ERK and AKT pathways as determined by increased expression of phospho-ERK and phospho-AKT. Inhibitors of ERK and AKT pathways completely reversed the effect of GHRH-R agonists on CSC proliferation. Our findings extend the observations of the expression of GHRH-R by CSCs and demonstrate that GHRH-R agonists have a direct effect on proliferation and survival of CSCs. These results support the therapeutic use of GHRH-R agonists for stimulating endogenous mechanisms for myocardial repair or for preconditioning of stem cells before transplantation.
Journal of the American Heart Association | 2015
Konstantinos E. Hatzistergos; Ellena C. Paulino; Raul A. Dulce; Lauro M. Takeuchi; Michael Bellio; Shathiyah Kulandavelu; Yenong Cao; Wayne Balkan; Rosemeire M. Kanashiro-Takeuchi; Joshua M. Hare
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target.
Journal of the American Heart Association | 2015
Luiza Bagno; Rosemeire M. Kanashiro-Takeuchi; Viky Y. Suncion; Samuel Golpanian; Vasileios Karantalis; Ariel Wolf; Bo Wang; Courtney Premer; Wayne Balkan; Jose Rodriguez; David Valdes; Marcos Rosado; Norman L. Block; Peter Goldstein; Azorides R. Morales; Ren Zhi Cai; Wei Sha; Andrew V. Schally; Joshua M. Hare
Background Growth hormone–releasing hormone agonists (GHRH‐As) stimulate cardiac repair following myocardial infarction (MI) in rats through the activation of the GHRH signaling pathway within the heart. We tested the hypothesis that the administration of GHRH‐As prevents ventricular remodeling in a swine subacute MI model. Methods and Results Twelve female Yorkshire swine (25 to 30 kg) underwent transient occlusion of the left anterior descending coronary artery (MI). Two weeks post MI, swine were randomized to receive injections of either 30 μg/kg GHRH‐A (MR‐409) (GHRH‐A group; n=6) or vehicle (placebo group; n=6). Cardiac magnetic resonance imaging and pressure–volume loops were obtained at multiple time points. Infarct, border, and remote (noninfarcted) zones were assessed for GHRH receptor by immunohistochemistry. Four weeks of GHRH‐A treatment resulted in reduced scar mass (GHRH‐A: −21.9±6.42%; P=0.02; placebo: 10.9±5.88%; P=0.25; 2‐way ANOVA; P=0.003), and scar size (percentage of left ventricular mass) (GHRH‐A: −38.38±4.63; P=0.0002; placebo: −14.56±6.92; P=0.16; 2‐way ANOVA; P=0.02). This was accompanied by improved diastolic strain. Unlike in rats, this reduced infarct size in swine was not accompanied by improved cardiac function as measured by serial hemodynamic pressure–volume analysis. GHRH receptors were abundant in cardiac tissue, with a greater density in the border zone of the GHRH‐A group compared with the placebo group. Conclusions Daily subcutaneous administration of GHRH‐A is feasible and safe in a large animal model of subacute ischemic cardiomyopathy. Furthermore, GHRH‐A therapy significantly reduced infarct size and improved diastolic strain, suggesting a local activation of the GHRH pathway leading to the reparative process.
Cardiovascular Research | 2017
Chen Ching Yuan; Katarzyna Kazmierczak; Jingsheng Liang; Rosemeire M. Kanashiro-Takeuchi; Thomas C. Irving; Aldrin V. Gomes; Yihua Wang; Thomas P. Burghardt; Danuta Szczesna-Cordary
Aims The E143K (Glu → Lys) mutation in the myosin essential light chain has been associated with restrictive cardiomyopathy (RCM) in humans, but the mechanisms that underlie the development of defective cardiac function are unknown. Using transgenic E143K-RCM mice, we sought to determine the molecular and cellular triggers of E143K-induced heart remodelling. Methods and results The E143K-induced abnormalities in cardiac function and morphology observed by echocardiography and invasive haemodynamics were paralleled by augmented active and passive tension measured in skinned papillary muscle fibres compared with wild-type (WT)-generated force. In vitro, E143K-myosin had increased duty ratio and binding affinity to actin compared with WT-myosin, increased actin-activated ATPase activity and slower rates of ATP-dependent dissociation of the acto-myosin complex, indicating an E143K-induced myosin hypercontractility. E143K was also observed to reduce the level of myosin regulatory light chain phosphorylation while that of troponin-I remained unchanged. Small-angle X-ray diffraction data showed a decrease in the filament lattice spacing (d1,0) with no changes in the equatorial reflections intensity ratios (I1,1/I1,0) in E143K vs. WT skinned papillary muscles. The hearts of mutant-mice demonstrated ultrastructural defects and fibrosis that progressively worsened in senescent animals and these changes were hypothesized to contribute to diastolic disturbance and to mild systolic dysfunction. Gene expression profiles of E143K-hearts supported the histopathology results and showed an upregulation of stress-response and collagen genes. Finally, proteomic analysis evidenced RCM-dependent metabolic adaptations and higher energy demands in E143K vs. WT hearts. Conclusions As a result of the E143K-induced myosin hypercontractility, the hearts of RCM mice model exhibited cardiac dysfunction, stiff ventricles and physiological, morphologic, and metabolic remodelling consistent with the development of RCM. Future efforts should be directed toward normalization of myosin motor function and the use of myosin-specific therapeutics to avert the hypercontractile state of E143K-myosin and prevent pathological cardiac remodelling.
Clinical and Translational Science | 2011
Rosemeire M. Kanashiro-Takeuchi; Lauro M. Takeuchi; Konstantinos E. Hatzistergos; Henry Quevedo; Sarah M. Selem; Adriana V. Treuer; Courtney Premer; Wayne Balkan; Irene Margitich; Yun Song; Qinghua Hu; Joshua M. Hare
Erythropoietin (EPO) has the potential to improve ischemic tissue by mobilizing endothelial progenitor cells and enhancing neovascularization. We hypothesized that combining EPO with human chorionic gonadotrophin (hCG) would improve post–myocardial infarction (MI) effects synergistically.