Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roshan Tofighi is active.

Publication


Featured researches published by Roshan Tofighi.


Cell Death & Differentiation | 2005

Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli.

Fredrik Elinder; Nesar Akanda; Roshan Tofighi; Shigeomi Shimizu; Yoshihide Tsujimoto; S Orrenius; Sandra Ceccatelli

Apoptotic cell death is an essential process in the development of the central nervous system and in the pathogenesis of its degenerative diseases. Efflux of K+ and Cl− ions leads to the shrinkage of the apoptotic cell and facilitates the activation of caspases. Here, we present electrophysiological and immunocytochemical evidences for the activation of a voltage-dependent anion channel (VDAC) in the plasma membrane of neurons undergoing apoptosis. Anti-VDAC antibodies blocked the channel and inhibited the apoptotic process. In nonapoptotic cells, plasma membrane VDAC1 protein can function as a NADH (-ferricyanide) reductase. Opening of VDAC channels in apoptotic cells was associated with an increase in this activity, which was partly blocked by VDAC antibodies. Hence, it appears that there might be a dual role for this protein in the plasma membrane: (1) maintenance of redox homeostasis in normal cells and (2) promotion of anion efflux in apoptotic cells.


Cell Cycle | 2008

Voltage-dependent anion channels (VDAC) in the plasma membrane play a critical role in apoptosis in differentiated hippocampal neurons but not in neural stem cells

Nesar Akanda; Roshan Tofighi; Johan Brask; Christoffer Tamm; Fredrik Elinder; Sandra Ceccatelli

microRNAs (miRNAs) are small non-coding RNAs that regulate a large variety of cellular processes including differentiation, apoptosis and proliferation. Several miRNAs display defective expression patterns in human tumors with the consequent alteration of target oncogene or tumor suppressor genes. Many of these miRNAs modulate the major proliferation pathways through direct interaction with critical regulators such as RAS, PI3K/PTEN or ABL, as well as members of the retinoblastoma pathway, Cyclin-CDK complexes or cell cycle inhibitors of the INK4 or Cip/Kip families. A complex interplay between miRNAs and MYC or E2F family members also exists to modulate cell cycle-dependent transcription during normal or tumoral proliferation. The ability of miRNAs to modulate these proliferation pathways may have relevant implications not only in physiological or developmental processes but also in tumor progression or cancer therapy.


Neurotoxicity Research | 2011

Hippocampal Neurons Exposed to the Environmental Contaminants Methylmercury and Polychlorinated Biphenyls Undergo Cell Death via Parallel Activation of Calpains and Lysosomal Proteases

Roshan Tofighi; Carolina Johansson; Matteo Goldoni; Wan Norhamidah Wan Ibrahim; Vladimir Gogvadze; Antonio Mutti; Sandra Ceccatelli

Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are widespread environmental pollutants commonly found as contaminants in the same food sources. Even though their neurotoxic effects are established, the mechanisms of action are not fully understood. In the present study, we have used the mouse hippocampal neuronal cell line HT22 to investigate the mechanisms of neuronal death induced by MeHg, PCB 153, and PCB 126, alone or in combination. All chemicals induced cell death with morphological changes compatible with either apoptosis or necrosis. Mitochondrial functions were impaired as shown by the significant decrease in mitochondrial Ca2+ uptake capacity and ATP levels. MeHg, but not the PCBs, induced loss of mitochondrial membrane potential and release of cytochrome c into the cytosol. Also, pre-treatment with the antioxidant MnTBAP was protective only against cell death induced by MeHg. While caspase activation was absent, the Ca2+-dependent proteases calpains were activated after exposure to MeHg or the selected PCBs. Furthermore, lysosomal disruption was observed in the exposed cells. Accordingly, pre-treatment with the calpain specific inhibitor PD150606 and/or the cathepsin D inhibitor Pepstatin protected against the cytotoxicity of MeHg and PCBs, and the protection was significantly enhanced when the two inhibitors were combined. Simultaneous exposures to lower doses of MeHg and PCBs suggested mostly antagonistic interactions. Taken together, these data indicate that MeHg and PCBs induce caspase-independent cell death via parallel activation of calpains and lysosomal proteases, and that in this model oxidative stress does not play a major role in PCB toxicity.


Brain Research | 2006

Hypoxia-independent apoptosis in neural cells exposed to carbon monoxide in vitro.

Roshan Tofighi; N Tillmark; Elisabetta Daré; Anna-Maja Åberg; Jan Larsson; Sandra Ceccatelli

The neurotoxic effects of carbon monoxide (CO) are well known. Brain hypoxia due to the binding of CO to hemoglobin is a recognized cause of CO neurotoxicity, while the direct effect of CO on intracellular targets remains poorly understood. In the present study, we have investigated the pathways leading to neural cell death induced by in vitro exposure to CO using a gas exposure chamber that we have developed. Mouse hippocampal neurons (HT22) and human glial cells (D384) were exposed to concentrations of CO ranging from 300 to 1000 ppm in the presence of 20% oxygen. Cytotoxicity was observed after 48 h exposure to 1000 ppm, corresponding to approximately 1 microM CO in the cultured medium, as measured by gas chromatography. CO induced cell death with characteristic features of apoptosis. Exposed cells exhibited loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, nuclei with chromatin condensation, and exposure of phosphatidyl serine on the external leaflet of the plasma membrane. CO also triggered activation of caspase and calpain proteases. Pre-incubation with either the pancaspase inhibitor Z-VAD-fmk (20 microM) or the calpain inhibitor E64d (25 microM) reduced by 50% the occurrence of apoptosis. When pre-incubating the cells with the two inhibitors together there was an additional reduction in the number of cells with apoptotic nuclei. These data suggest that CO causes apoptosis via activation of parallel proteolytic pathways involving both caspases and calpains. Furthermore, pre-treatment with the antioxidant MnTBAP (100 microM) significantly reduced the number of apoptotic nuclei, pointing to a critical role of oxidative stress in CO toxicity.


Neurotoxicity Research | 2012

Dexamethasone Enhances Oxidative Stress-Induced Cell Death in Murine Neural Stem Cells

Henricus A. M. Mutsaers; Roshan Tofighi

Glucocorticoids (GCs) are essential for normal brain development; however, there is consistent evidence that prenatal exposure of the fetal brain to excess GCs permanently modifies the phenotype of neuronal cells. In this paper, the murine-derived multipotent stem cell line C17.2 was used, as an in vitro model, to investigate the impact of GCs on neural stem cell survival. Our results indicate that dexamethasone (Dex) increases the sensitivity of murine neural stem cells (NSCs) to 2,3-methoxy-1,4-naphthoquinone-induced apoptosis, and this effect could be blocked by the glucocorticoid-receptor (GR) antagonist mifepristone, strongly suggesting the involvement of the GR. Furthermore, our results show that Dex decreases cell number and induces a G1-arrest. We hypothesized that the mitochondria are the main target of Dex. Interestingly, after treatment with Dex, 72% of the investigated genes involved in the mitochondrial respiratory chain are down-regulated, as well as 29% of the genes encoding for antioxidant enzymes. In conclusion, using the C17.2 cell line as a model to study developmental neurotoxicity in vitro, we have shown that GCs can increase cellular sensitivity to oxidative stress and alter the phenotype of NCSs.


Toxicology and Applied Pharmacology | 2013

Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

Wan Norhamidah Wan Ibrahim; Roshan Tofighi; Natalia Onishchenko; Paola Rebellato; Raj Bose; Per Uhlén; Sandra Ceccatelli

Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca²⁺ activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS.


Brain Research | 2002

Styrene 7,8-oxide induces caspase activation and regular DNA fragmentation in neuronal cells

Elisabetta Daré; Roshan Tofighi; Maria Vittoria Vettori; Takashi Momoi; Diana Poli; Takaomi C. Saido; Antonio Mutti; Sandra Ceccatelli

Neurobehavioral changes have been described in workers occupationally exposed to styrene vapors. Alterations of neurotransmitters and loss of neurons have been observed in brains of styrene-exposed rats. However, the mechanisms of neuronal damage are not yet clearly understood. We have characterized the cellular alterations induced by the main reactive intermediate of styrene metabolism, styrene 7,8-oxide (SO) in the human neuroblastoma SK-N-MC cell line and primary culture of rat cerebellar granule cells (CGC). SK-N-MC cells exposed to SO (0.3-1 mM) displayed apoptotic morphology, together with chromatin condensation and DNA cleavage into high molecular weight fragments of regular size. These features were accompanied by the activation of class II caspases, as detected with the DEVD assay, by following the cleavage of the caspase-substrate poly (ADP-ribose) polymerase (PARP) and by detection of the active fragment of caspase-3. Pre-incubation of the cells with the caspase inhibitor z-VAD-fmk reduced the cellular damage induced by SO, suggesting that caspases play an important role in SO toxicity. Increased proteolysis by class II caspases was detected also in primary culture of CGC exposed to SO. In addition, the presence of the 150-kDa cleavage product of alpha-fodrin suggests a possible activation of calpains in SK-N-MC cells. Moreover, SO did not affect the level of expression of the p53 protein, even though it is known to cause DNA damage. The identified intracellular pathways affected by SO exposure provides end-points that can be used in future studies for the evaluation of the neurotoxic effect of styrene in vivo.


Pediatric Nephrology | 2006

Carbon monoxide prevents apoptosis induced by uropathogenic Escherichia coli toxins

Ming Chen; Roshan Tofighi; Wenjie Bao; Olle Aspevall; Timo Jahnukainen; Lars E. Gustafsson; Sandra Ceccatelli; Gianni Celsi

Urinary tract infections (UTIs) are often caused by Escherichia coli (E. coli). Previous studies have demonstrated that up-regulation of heme oxygenase-1 (HO-1) may trigger a survival mechanism against renal cell death induced by E. coli toxins. The present study analyses the role of carbon monoxide (CO), an end product of HO-1, in the survival mechanism. Moreover, we identified hemolysin as a putative pro-apoptotic toxin in the E. coli supernatant. Tubular cells were incubated with CO in the presence or absence of E. coli toxins. Uropathogenic or transformants of non-pathogenic strains expressing hemolysin were used. We found that the survival pathway during E. coli infection might be activated by HO-1-derived production of CO. The protection by CO was also associated with up-regulation of p21 protein expression. Furthermore, we found that in children with pyelonephritis, all the E. coli strains expressing hemolysin induced apoptosis. In E. coli strains not expressing hemolysin, only 45% of the strains could induce apoptosis. In conclusion, generation of CO elicited by HO-1 could promote survival signaling in renal cells. Hemolysin is one of the secreted toxins that are involved in inducing apoptosis during UTI.


Methods of Molecular Biology | 2011

Neural Stem Cells for Developmental Neurotoxicity Studies

Roshan Tofighi; Michaela Moors; Raj Bose; Wan Norhamidah Wan Ibrahim; Sandra Ceccatelli

The developing nervous system is particularly susceptible to toxicants, and exposure during development may result in long-lasting neurological impairments. The damage can range from subtle to severe, and it may impose substantial burdens on affected individuals, their families, and society. Given the little information available on developmental neurotoxicity (DNT) and the growing number of chemicals that need to be tested, new testing strategies and approaches are necessary to identify developmental neurotoxic agents with speed, reliability, and respect for animal welfare. So far, there are no validated alternative methods for DNT testing. Recently, neural stem/progenitor cells have been proposed as relevant models for alternative DNT testing. In this chapter, we provide detailed protocols for culturing neural stem cells (NSCs), in vitro experimental models, including primary cultures of rat and human embryonic NSCs, rat and mouse adult NSCs, as well as the mouse NSC line C17.2 that we have implemented and successfully used for neurotoxicity studies.


Toxicological Sciences | 2011

Non–Dioxin-like Polychlorinated Biphenyls Interfere with Neuronal Differentiation of Embryonic Neural Stem Cells

Roshan Tofighi; Wan Norhamidah Wan Ibrahim; Paola Rebellato; Patrik L. Andersson; Per Uhlén; Sandra Ceccatelli

Developmental exposure to food contaminants, such as polychlorinated biphenyls (PCBs), has been considered as a possible cause of neurodevelopmental disorders. We have investigated the effects of noncytotoxic concentrations of PCBs 153 and 180 on spontaneous differentiation of rat embryonic neural stem cells (NSCs). Upon removal of basic fibroblast growth factor to induce spontaneous differentiation, cells were exposed to 100 nM of the selected PCBs for 48 h and analyzed after 5 days. Both PCBs 153 and 180 induced a significant increase in the number of neurite-bearing Tuj1-positive cells with a concomitant decrease in proliferating cells, as detected by FUCCI transfection and EdU staining. Measurements of spontaneous Ca²⁺ oscillations showed a decreased number of cells with Ca²⁺ activity after PCB exposure, further confirming the increase in neuronal cells. Conversely, exposure to methylmercury (MeHg), which we evaluated in parallel, led to an increased number of cells with Ca²⁺ activity, in agreement with the previously observed inhibition of neuronal differentiation. Analysis with quantitative PCR of the Notch pathway revealed that PCBs have a repressive action on Notch signaling, whereas MeHg activates it. Altogether, the data indicate that nanomolar concentrations of the selected non-dioxin-like PCBs and MeHg interfere in opposite directions with neuronal spontaneous differentiation of NSCs through Notch signaling. Combined exposures to PCBs and MeHg resulted in an induction of apoptosis and an antagonistic interaction on spontaneous neuronal differentiation. NSCs are further proven to be a valuable in vitro model to identify potential developmental neurotoxicants.

Collaboration


Dive into the Roshan Tofighi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge