Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosina Girones is active.

Publication


Featured researches published by Rosina Girones.


Emerging Infectious Diseases | 2003

Hepatitis E Virus Epidemiology in Industrialized Countries

Pilar Clemente-Casares; Sonia Pina; Maria Buti; Rosend Jardi; Margarita Martín; Sílvia Bofill-Mas; Rosina Girones

To determine the prevalence of Hepatitis E virus (HEV) in industrialized nations, we analyzed the excretion of HEV strains by the populations of Spain, France, Greece, Sweden, and the United States. Twenty of 46 (43.5%) urban sewage samples collected in Barcelona from 1994 to 2002 tested positive for HEV. We identified 15 HEV strains, which were similar to two HEV isolates previously described in Barcelona in clinical samples and to strains from diverse geographic HEV-nonendemic areas. We also identified two HEV strains in sewage samples from Washington, D.C., and Nancy, France; these samples were also positive for Hepatitis A virus. In addition, we studied the role of pigs as a reservoir for HEV and identified one new swine HEV strain. Our results suggest that HEV may be more prevalent than previously considered in industrialized countries and that variants of the virus circulate simultaneously in one region.


Water Research | 2010

Molecular detection of pathogens in water - the pros and cons of molecular techniques.

Rosina Girones; María A. Ferrús; José Luis Alonso; Byron Calgua; Adriana de Abreu Corrêa; Ayalkibet Hundesa; Anna Carratalà; Sílvia Bofill-Mas

Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed.


Journal of Hepatology | 2000

HEV identified in serum from humans with acute hepatitis and in sewage of animal origin in Spain

Sonia Pina; Maria Buti; Montserrat Cotrina; Joan Piella; Rosina Girones

BACKGROUND/AIMS Hepatitis E virus (HEV) is an enterically transmitted pathogen that appears sporadically in non-endemic countries. We studied HEV as a causal agent of acute hepatitis cases in the Spanish population, and the role of pigs as an animal reservoir. METHODS The presence of HEV-RNA was analysed by nested polymerase chain reaction in 37 serum samples from patients with acute viral hepatitis, 48 porcine serum samples, 6 pig faecal samples and 12 slaughter-house sewage samples. Presence of antibodies was also tested in porcine sera. RESULTS HEV-RNA was found in 3 human serum samples from patients presenting IgG anti-HEV antibodies. Nucleotide sequence analysis identified 2 strains with 93.4% identity, phylogenetically most closely related to the Greece1 isolate, and more closely related to North American and other European strains than to those from endemic regions. HEV-RNA was also detected in slaughterhouse sewage mainly from pigs, presenting 92-94% nucleotide similarity compared to the strains detected in the human sera. Twenty-five per cent of the pigs tested presented IgG anti-HEV antibodies. CONCLUSIONS These data suggest that the HEV could be more widespread than previously thought, and present new evidence of the close relationship between HEV strains detected in pigs and those from acute hepatitis patients.


Applied and Environmental Microbiology | 2002

Environmental Factors Influencing Human Viral Pathogens and Their Potential Indicator Organisms in the Blue Mussel, Mytilus edulis: the First Scandinavian Report

Bodil Hernroth; Ann-Christine Conden-Hansson; Ann-Sofi Rehnstam-Holm; Rosina Girones; Annika Allard

ABSTRACT This study was carried out in order to investigate human enteric virus contaminants in mussels from three sites on the west coast of Sweden, representing a gradient of anthropogenic influence. Mussels were sampled monthly during the period from February 2000 to July 2001 and analyzed for adeno-, entero-, Norwalk-like, and hepatitis A viruses as well as the potential viral indicator organisms somatic coliphages, F-specific RNA bacteriophages, bacteriophages infecting Bacteroides fragilis, and Escherichia coli. The influence of environmental factors such as water temperature, salinity, and land runoff on the occurrence of these microbes was also included in this study. Enteric viruses were found in 50 to 60% of the mussel samples, and there were no pronounced differences between the samples from the three sites. E. coli counts exceeded the limit for category A for shellfish sanitary safety in 40% of the samples from the sites situated in fjords. However, at the site in the outer archipelago, this limit was exceeded only once, in March 2001, when extremely high levels of atypical indole-negative strains of E. coli were registered at all three sites. The environmental factors influenced the occurrence of viruses and phages differently, and therefore, it was hard to find a coexistence between them. This study shows that, for risk assessment, separate modeling should be done for every specific area, with special emphasis on environmental factors such as temperature and land runoff. The present standard for human fecal contamination, E. coli, seems to be an acceptable indicator of only local sanitary contamination; it is not a reliable indicator of viral contaminants in mussels. To protect consumers and get verification of “clean” mussels, it seems necessary to analyze for viruses as well. The use of a molecular index of the human contamination of Swedish shellfish underscores the need for reference laboratories with high-technology facilities.


Applied and Environmental Microbiology | 2006

Quantification and Stability of Human Adenoviruses and Polyomavirus JCPyV in Wastewater Matrices

Sílvia Bofill-Mas; Nestor Albinana-Gimenez; Pilar Clemente-Casares; Ayalkibet Hundesa; Annika Allard; Miquel Calvo; Rosina Girones

ABSTRACT Human adenoviruses (HAdV) and human polyomavirus JCPyV have been previously proposed as indicators of fecal viral contamination in the environment. Different wastewater matrices have been analyzed by applying real-time quantitative PCR procedures for the presence, quantity, and stability of a wide diversity of excreted HAdV and JCPyV. High quantities of HAdV and JCPyV were detected in sewage, effluent wastewater, sludge, and biosolid samples. Both viruses showed high stability in urban sewage. These results confirm the suitability of both viruses as indicators of human fecal viral pollution.


Applied and Environmental Microbiology | 2000

Documenting the epidemiologic patterns of polyomaviruses in human populations by studying their presence in urban sewage.

Sílvia Bofill-Mas; Sonia Pina; Rosina Girones

ABSTRACT This is the first description, to our knowledge, of the distribution of human polyomavirus and simian virus 40 (SV40) in urban sewage. Using a nested-PCR procedure, we report the detection of human polyomaviruses JC virus (JCV) and BK virus (BKV) but not SV40 in a high percentage of urban sewage samples obtained from widely divergent geographical areas in Europe and Africa. For a total of 28 samples analyzed, JCV was detected in 26, BKV was detected in 22, and none was positive for SV40. All geographical areas showed a high prevalence of these viruses with mean estimated values of JC viral particles per ml on the order of 103 in Barcelona (Spain) and Nancy (France) and 102 in Pretoria (South Africa) and Umeå (Sweden) and mean values of BK viral particles on the order of 102 in Pretoria and Barcelona and 101 in Nancy and Umeå. This compares with estimated mean values of 102 to 103 for human adenovirus that was evaluated as a control. Nucleotide sequence analysis of the amplified DNA from some of the samples is also presented and represents the sequence of the most abundant JC and BK viral strains in these samples. The nucleotide sequence of the JCV detected was also analyzed in a phylogenetic study and for genomic characterization in the regulatory region. This study has shown that human polyomaviruses are spread in high concentrations in the sewage of different geographical areas and are present in contaminated environments. The frequency and concentration of JCV detected in the environment and the absence of described animal hosts suggest that JCV may be useful as a marker for fecal pollution of anthropogenic origin. The results also support the idea previously described that the strains of JCV are closely related to the ethnic origin of the population studied. The procedure applied should also be useful in future studies of population patterns of viral excretion and as a tool in epidemiological studies for the detection of changes in the prevalence of specific viral pathogens.


Water Research | 2011

Surveillance of adenoviruses and noroviruses in European recreational waters

A. Peter Wyn-Jones; Annalaura Carducci; Nigel Cook; Martin D’Agostino; Maurizio Divizia; Jens Fleischer; Christophe Gantzer; Andrew Gawler; Rosina Girones; Christiane Höller; Ana Maria de Roda Husman; David Kay; Iwona Kozyra; Juan M. López-Pila; Michele Muscillo; Maria São José Nascimento; George Papageorgiou; Saskia A. Rutjes; Jane Sellwood; Regine Szewzyk; Mark D. Wyer

Abstract Exposure to human pathogenic viruses in recreational waters has been shown to cause disease outbreaks. In the context of Article 14 of the revised European Bathing Waters Directive 2006/7/EC (rBWD, CEU, 2006) a Europe-wide surveillance study was carried out to determine the frequency of occurrence of two human enteric viruses in recreational waters. Adenoviruses were selected based on their near-universal shedding and environmental survival, and noroviruses (NoV) selected as being the most prevalent gastroenteritis agent worldwide. Concentration of marine and freshwater samples was done by adsorption/elution followed by molecular detection by (RT)-PCR. Out of 1410 samples, 553 (39.2%) were positive for one or more of the target viruses. Adenoviruses, detected in 36.4% of samples, were more prevalent than noroviruses (9.4%), with 3.5% GI and 6.2% GII, some samples being positive for both GI and GII. Of 513 human adenovirus-positive samples, 63 (12.3%) were also norovirus-positive, whereas 69 (7.7%) norovirus-positive samples were adenovirus-negative. More freshwater samples than marine water samples were virus-positive. Out of a small selection of samples tested for adenovirus infectivity, approximately one-quarter were positive. Sixty percent of 132 nested-PCR adenovirus-positive samples analysed by quantitative PCR gave a mean value of over 3000 genome copies per L of water. The simultaneous detection of infectious adenovirus and of adenovirus and NoV by (RT)PCR suggests that the presence of infectious viruses in recreational waters may constitute a public health risk upon exposure. These studies support the case for considering adenoviruses as an indicator of bathing water quality.


Applied and Environmental Microbiology | 2002

Distribution of Human Virus Contamination in Shellfish from Different Growing Areas in Greece, Spain, Sweden, and the United Kingdom

M. Formiga-Cruz; G. Tofiño-Quesada; Sílvia Bofill-Mas; D. N. Lees; K. Henshilwood; Annika Allard; A.-C. Conden-Hansson; Bodil Hernroth; Apostolos Vantarakis; A. Tsibouxi; M. Papapetropoulou; M. D. Furones; Rosina Girones

ABSTRACT Viral pollution in shellfish has been analyzed simultaneously across a wide range of geographical regions, with emphasis on the concomitant variations in physicochemical characteristics and social features. The methods for sample treatment and for the detection of human enteric viruses were optimized by the participating laboratories. The second part of this study involves the selection of a protocol for virus detection, which was validated by analyzing the distribution and concentration of human viral pathogens under diverse conditions during an 18-month period in four European countries. Shellfish-growing areas from diverse countries in the north and south of Europe were defined and studied, and the microbiological quality of the shellfish was analyzed. Human adenovirus, Norwalk-like virus, and enterovirus were identified as contaminants of shellfish in all the participating countries. Hepatitis A virus was also isolated in all areas except Sweden. The seasonal distribution of viral contamination was also described. Norwalk-like virus appeared to be the only group of viruses that demonstrated seasonal variation, with lower concentrations occurring during warm months. The depuration treatments currently applied were shown to be adequate for reducing Escherichia coli levels but ineffective for the elimination of viral particles. The human adenoviruses detected by PCR correlate with the presence of other human viruses and could be useful as a molecular index of viral contamination in shellfish.


Journal of Virology | 2001

Potential Transmission of Human Polyomaviruses through the Gastrointestinal Tract after Exposure to Virions or Viral DNA

Sílvia Bofill-Mas; Meritxell Formiga-Cruz; Pilar Clemente-Casares; Francesc Calafell; Rosina Girones

ABSTRACT The mechanism of human-to-human transmission of the polyomaviruses JC virus (JCV) and BK virus (BKV) has not been firmly established with regard to possible human exposure. JCV and BKV have been found in sewage samples from different geographical areas in Europe, Africa, and the United States, with average concentrations of 102 to 103 JCV particles/ml and 101 to 102BKV particles/ml. Selected polyomavirus-positive sewage samples were further characterized. The JCV and BKV present in these samples were identified by sequencing of the intergenic region (the region found between the T antigen and VP coding regions) of JCV and the VP1 region of BKV. The regulatory region of the JCV and BKV strains found in sewage samples presented archetypal or archetype-like genetic structures, as described for urine samples. The stability (the time required for a 90% reduction in the virus concentration) of the viral particles in sewage at 20°C was estimated to be 26.7 days for JCV and 53.6 days for BKV. The presence of JCV in 50% of the shellfish samples analyzed confirmed the stability of these viral particles in the environment. BKV and JCV particles were also found to be stable at pH 5; however, treatment at a pH lower than 3 resulted in the detection of free viral DNA. Since most humans are infected with JCV and BKV, these data indicate that the ingestion of contaminated water or food could represent a possible portal of entrance of these viruses or polyomavirus DNA into the human population.


Mbio | 2011

Raw Sewage Harbors Diverse Viral Populations

Paul G. Cantalupo; Byron Calgua; Guoyan Zhao; Ayalkibet Hundesa; Adam D. Wier; Josh P. Katz; Michael Grabe; Roger W. Hendrix; Rosina Girones; David Wang; James M. Pipas

ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. IMPORTANCE At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected. At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that the viral universe is far more vast and diverse than previously suspected.

Collaboration


Dive into the Rosina Girones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron Calgua

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Lucena

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jofre

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge