Rosina T. Lis
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosina T. Lis.
Cell | 2015
Dan R. Robinson; Eliezer M. Van Allen; Yi Mi Wu; Nikolaus Schultz; Robert J. Lonigro; Juan Miguel Mosquera; Bruce Montgomery; Mary-Ellen Taplin; Colin C. Pritchard; Gerhardt Attard; Himisha Beltran; Wassim Abida; Robert K. Bradley; Jake Vinson; Xuhong Cao; Pankaj Vats; Lakshmi P. Kunju; Maha Hussain; Felix Y. Feng; Scott A. Tomlins; Kathleen A. Cooney; David C. Smith; Christine Brennan; Javed Siddiqui; Rohit Mehra; Yu Chen; Dana E. Rathkopf; Michael J. Morris; Stephen B. Solomon; Jeremy C. Durack
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.
Science | 2012
Kexin Xu; Zhenhua Jeremy Wu; Anna C. Groner; Housheng Hansen He; Changmeng Cai; Rosina T. Lis; Xiaoqiu Wu; Edward C. Stack; Massimo Loda; Tao Liu; Han Xu; Laura Cato; James E. Thornton; Richard I. Gregory; Colm Morrissey; Robert L. Vessella; Rodolfo Montironi; Cristina Magi-Galluzzi; Philip W. Kantoff; Steven P. Balk; X. Shirley Liu; Myles Brown
Alternative Role for EZH2 Epigenetic regulators are implicated in cancer progression and proposed as therapeutic targets. Xu et al. (p. 1465; see the Perspective by Cavalli) report that EZH2 (Enhancer of zeste homolog 2), a factor previously thought to exert its oncogenic function primarily as part of the polycomb repressive complex, acts through a distinct mechanism in cells of castration-resistant prostate cancer. Rather than exclusively silencing gene expression through histone methylation, EZH2 acts as a transcriptional coactivator. The activation function of EZH2 plays a critical role in the growth of castration-resistant prostate cancer cells, which could be relevant in future drug development. An epigenetic regulator positively regulates gene expression in cell-based models of hormone-resistant prostate cancer. Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.
Nature | 2011
Zhihu Ding; Chang Jiun Wu; Gerald C. Chu; Yonghong Xiao; Jingfang Zhang; Samuel R. Perry; Emma S. Labrot; Xiaoqiu Wu; Rosina T. Lis; Yujin Hoshida; David Hiller; Baoli Hu; Shan Jiang; Hongwu Zheng; Alexander H. Stegh; Kenneth L. Scott; Sabina Signoretti; Nabeel Bardeesy; Y. Alan Wang; David E. Hill; Todd R. Golub; Meir J. Stampfer; Wing Hung Wong; Massimo Loda; Lorelei A. Mucci; Lynda Chin; Ronald A. DePinho
Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFβ/BMP–SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.
Nature Biotechnology | 2014
Jens Lohr; Viktor A. Adalsteinsson; Kristian Cibulskis; Atish D. Choudhury; Mara Rosenberg; Peter Cruz-Gordillo; Joshua M. Francis; Cheng-Zhong Zhang; Alex K. Shalek; Rahul Satija; John J. Trombetta; Diana Lu; Naren Tallapragada; Narmin Tahirova; Sora Kim; Brendan Blumenstiel; Carrie Sougnez; Alarice Lowe; Bang Wong; Daniel Auclair; Eliezer M. Van Allen; Mari Nakabayashi; Rosina T. Lis; Gwo-Shu Mary Lee; Tiantian Li; Matthew S. Chabot; Amy Ly; Mary-Ellen Taplin; Thomas E. Clancy; Massimo Loda
Comprehensive analyses of cancer genomes promise to inform prognoses and precise cancer treatments. A major barrier, however, is inaccessibility of metastatic tissue. A potential solution is to characterize circulating tumor cells (CTCs), but this requires overcoming the challenges of isolating rare cells and sequencing low-input material. Here we report an integrated process to isolate, qualify and sequence whole exomes of CTCs with high fidelity using a census-based sequencing strategy. Power calculations suggest that mapping of >99.995% of the standard exome is possible in CTCs. We validated our process in two patients with prostate cancer, including one for whom we sequenced CTCs, a lymph node metastasis and nine cores of the primary tumor. Fifty-one of 73 CTC mutations (70%) were present in matched tissue. Moreover, we identified 10 early trunk and 56 metastatic trunk mutations in the non-CTC tumor samples and found 90% and 73% of these mutations, respectively, in CTC exomes. This study establishes a foundation for CTC genomics in the clinic.
The American Journal of Surgical Pathology | 2011
Anna Laury; Ruth Perets; Huiying Piao; Jeffrey F. Krane; Justine A. Barletta; Christopher A. French; Lucian R. Chirieac; Rosina T. Lis; Massimo Loda; Jason L. Hornick; Ronny Drapkin; Michelle S. Hirsch
PAX8 is a paired-box gene important in embryogenesis of the thyroid, Müllerian, and renal/upper urinary tracts, and expression of PAX8 has been previously described in carcinomas from each of these sites. However, a large study including a wide variety of epithelial neoplasms from multiple organ sites other than the thyroid, kidney, or Müllerian system has not been performed. The goal of this study was to evaluate the utility of PAX8 immunostaining based on the evaluation of a wide range of epithelial tumors. PAX8 immunohistochemistry was performed on 1357 tumors (486 tumors in whole-tissue sections and 871 tumors in tissue microarrays, predominantly epithelial) from multiple organs. Only nuclear staining was scored as positive, and tumors were evaluated for the extent and intensity of staining. Western blot analysis with PAX8 was also performed on multiple tumor cell lines. Nuclear PAX8 staining was present in 91% (60 of 66) of thyroid tumors, 90% (158 of 176) of renal cell carcinomas (RCCs), 81% (13 of 16) of renal oncocytomas, 99% (164 of 165) of high-grade ovarian serous carcinomas, 71% (32 of 49) of nonserous ovarian epithelial neoplasms, 91% (10 of 11) of cervical epithelial lesions, and 98% (152 of 155) of endometrial adenocarcinomas. Of the remaining 719 evaluated tumors, only 30 cases (4%), including 12 thymic neoplasms, 3 bladder urothelial carcinomas, 4 lung squamous cell carcinomas, 2 esophageal adenocarcinomas, 1 pancreatic adenocarcinoma, 2 cholangiocarcinomas, 1 ovarian Sertoli-Leydig cell tumor, 1 ovarian sex cord stromal tumor, 3 testicular mixed germ cell tumors, and 1 acinic cell carcinoma, showed at least weak or focal PAX8 positivity. The unexpected finding was diffuse, moderate staining of PAX8 in a subset of thymomas and thymic carcinomas. The 689 remaining tumors, including but not limited to those from the prostate, colon, stomach, liver, adrenal gland, and head and neck, and small cell carcinomas from the lung, cervix, and ovary, were PAX8 negative. PAX8 specificity was confirmed by Western blot analysis, as expression was detected only in ovarian and RCC cell lines. These results show that PAX8 is a highly sensitive marker for thyroid, renal, Müllerian, and thymic tumors. Importantly, all lung adenocarcinomas, breast and adrenal neoplasms, and the majority of gastrointestinal tumors were negative for PAX8. Therefore, PAX8 is an excellent marker for confirming primary tumor site. In a subset of cases, additional markers, including but not limited to thyroid transcription factor-1, RCC, and Wilms tumor-1, may be needed to distinguish between the 3 most common PAX8-positive tumors.
Journal of Clinical Oncology | 2014
Mary-Ellen Taplin; Bruce Montgomery; Christopher J. Logothetis; Glenn J. Bubley; Jerome P. Richie; Bruce L. Dalkin; Martin G. Sanda; John W. Davis; Massimo Loda; Lawrence D. True; Patricia Troncoso; Huihui Ye; Rosina T. Lis; Brett T. Marck; Alvin M. Matsumoto; Steven P. Balk; Elahe A. Mostaghel; Trevor M. Penning; Peter S. Nelson; Wanling Xie; Zhenyang Jiang; Christopher M. Haqq; Daniel Tamae; Nam Phuong Tran; Weimin Peng; Thian Kheoh; Arturo Molina; Philip W. Kantoff
PURPOSE Cure rates for localized high-risk prostate cancers (PCa) and some intermediate-risk PCa are frequently suboptimal with local therapy. Outcomes are improved by concomitant androgen-deprivation therapy (ADT) with radiation therapy, but not by concomitant ADT with surgery. Luteinizing hormone-releasing hormone agonist (LHRHa; leuprolide acetate) does not reduce serum androgens as effectively as abiraterone acetate (AA), a prodrug of abiraterone, a CYP17 inhibitor that lowers serum testosterone (< 1 ng/dL) and improves survival in metastatic PCa. The possibility that greater androgen suppression in patients with localized high-risk PCa will result in improved clinical outcomes makes paramount the reassessment of neoadjuvant ADT with more robust androgen suppression. PATIENTS AND METHODS A neoadjuvant randomized phase II trial of LHRHa with AA was conducted in patients with localized high-risk PCa (N = 58). For the first 12 weeks, patients were randomly assigned to LHRHa versus LHRHa plus AA. After a research prostate biopsy, all patients received 12 additional weeks of LHRHa plus AA followed by prostatectomy. RESULTS The levels of intraprostatic androgens from 12-week prostate biopsies, including the primary end point (dihydrotestosterone/testosterone), were significantly lower (dehydroepiandrosterone, Δ(4)-androstene-3,17-dione, dihydrotestosterone, all P < .001; testosterone, P < .05) with LHRHa plus AA compared with LHRHa alone. Prostatectomy pathologic staging demonstrated a low incidence of complete responses and minimal residual disease, with residual T3- or lymph node-positive disease in the majority. CONCLUSION LHRHa plus AA treatment suppresses tissue androgens more effectively than LHRHa alone. Intensive intratumoral androgen suppression with LHRHa plus AA before prostatectomy for localized high-risk PCa may reduce tumor burden.
Journal of Clinical Oncology | 2010
Paul L. Nguyen; Jing Ma; Jorge E. Chavarro; Matthew L. Freedman; Rosina T. Lis; Giuseppe Fedele; Christopher Fiore; Weiliang Qiu; Michelangelo Fiorentino; Stephen Finn; Kathryn L. Penney; Anna S. Eisenstein; Fredrick R. Schumacher; Lorelei A. Mucci; Meir J. Stampfer; Edward Giovannucci; Massimo Loda
PURPOSE Fatty acid synthase (FASN) regulates de novo lipogenesis, body weight, and tumor growth. We examined whether common germline single nucleotide polymorphisms (SNPs) in the FASN gene affect prostate cancer (PCa) risk or PCa-specific mortality and whether these effects vary by body mass index (BMI). METHODS In a prospective nested case-control study of 1,331 white patients with PCa and 1,267 age-matched controls, we examined associations of five common SNPs within FASN (and 5 kb upstream/downstream, R(2) > 0.8) with PCa incidence and, among patients, PCa-specific death and tested for an interaction with BMI. Survival analyses were repeated for tumor FASN expression (n = 909). RESULTS Four of the five SNPs were associated with lethal PCa. SNP rs1127678 was significantly related to higher BMI and interacted with BMI for both PCa risk (P(interaction) = .004) and PCa mortality (P(interaction) = .056). Among overweight men (BMI > or = 25 kg/m(2)), but not leaner men, the homozygous variant allele carried a relative risk of advanced PCa of 2.49 (95% CI, 1.00 to 6.23) compared with lean men with the wild type. Overweight patients carrying the variant allele had a 2.04 (95% CI, 1.31 to 3.17) times higher risk of PCa mortality. Similarly, overweight patients with elevated tumor FASN expression had a 2.73 (95% CI, 1.05 to 7.08) times higher risk of lethal PCa (P(interaction) = .02). CONCLUSION FASN germline polymorphisms were significantly associated with risk of lethal PCa. Significant interactions of BMI with FASN polymorphisms and FASN tumor expression suggest FASN as a potential link between obesity and poor PCa outcome and raise the possibility that FASN inhibition could reduce PCa-specific mortality, particularly in overweight men.
Nature Genetics | 2013
Andrea Lunardi; Ugo Ala; Mirjam T. Epping; Leonardo Salmena; John G. Clohessy; Kaitlyn A. Webster; Guocan Wang; Roberta Mazzucchelli; Maristella Bianconi; Edward C. Stack; Rosina T. Lis; Akash Patnaik; Lewis C. Cantley; Glenn J. Bubley; Carlos Cordon-Cardo; William L. Gerald; Rodolfo Montironi; Sabina Signoretti; Massimo Loda; Caterina Nardella; Pier Paolo Pandolfi
Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten loss–driven mouse model of prostate cancer through the induction of apoptosis and proliferation block. Conversely, this response is bypassed with deletion of either Trp53 or Zbtb7a together with Pten, leading to the development of castration-resistant prostate cancer (CRPC). Mechanistically, the integrated acquisition of data from mouse models and patients identifies the expression patterns of XAF1, XIAP and SRD5A1 as a predictive and actionable signature for CRPC. Notably, we show that combined inhibition of XIAP, SRD5A1 and AR pathways overcomes castration resistance. Thus, our co-clinical approach facilitates the stratification of patients and the development of tailored and innovative therapeutic treatments.
Nature Genetics | 2015
Mark Pomerantz; Fugen Li; David Y. Takeda; Romina Lenci; Apurva Chonkar; Matthew S. Chabot; Paloma Cejas; Francisca Vazquez; Jennifer Cook; Ramesh A. Shivdasani; Michaela Bowden; Rosina T. Lis; William C. Hahn; Philip W. Kantoff; Myles Brown; Massimo Loda; Henry W. Long; Matthew L. Freedman
Master transcription factors interact with DNA to establish cell type identity and to regulate gene expression in mammalian cells. The genome-wide map of these transcription factor binding sites has been termed the cistrome. Here we show that the androgen receptor (AR) cistrome undergoes extensive reprogramming during prostate epithelial transformation in man. Using human prostate tissue, we observed a core set of AR binding sites that are consistently reprogrammed in tumors. FOXA1 and HOXB13 colocalized at the reprogrammed AR binding sites in human tumor tissue. Introduction of FOXA1 and HOXB13 into an immortalized prostate cell line reprogrammed the AR cistrome to resemble that of a prostate tumor, functionally linking these specific factors to AR cistrome reprogramming. These findings offer mechanistic insights into a key set of events that drive normal prostate epithelium toward transformation and establish the centrality of epigenetic reprogramming in human prostate tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Chiara Grisanzio; Lillian Werner; David Y. Takeda; Bisola C. Awoyemi; Mark Pomerantz; Hiroki Yamada; Prasanna Sooriakumaran; Brian D. Robinson; Robert Leung; Anna C. Schinzel; Ian G. Mills; Helen Ross-Adams; David E. Neal; Masahito Kido; Toshihiro Yamamoto; Gillian Petrozziello; Edward C. Stack; Rosina T. Lis; Philip W. Kantoff; Massimo Loda; Oliver Sartor; Shin Egawa; Ashutosh Tewari; William C. Hahn; Matthew L. Freedman
One of the central goals of human genetics is to discover the genes and pathways driving human traits. To date, most of the common risk alleles discovered through genome-wide association studies (GWAS) map to nonprotein-coding regions. Because of our relatively poorer understanding of this part of the genome, the functional consequences of trait-associated variants pose a considerable challenge. To identify the genes through which risk loci act, we hypothesized that the risk variants are regulatory elements. For each of 12 known risk polymorphisms, we evaluated the correlation between risk allele status and transcript abundance for all annotated protein-coding transcripts within a 1-Mb interval. A total of 103 transcripts were evaluated in 662 prostate tissue samples [normal (n = 407) and tumor (n = 255)] from 483 individuals [European Americans (n = 233), Japanese (n = 127), and African Americans (n = 123)]. In a pooled analysis, 4 of the 12 risk variants were strongly associated with five transcripts (NUDT11, MSMB, NCOA4, SLC22A3, and HNF1B) in histologically normal tissue (P ≤ 0.001). Although associations were also observed in tumor tissue, they tended to be more attenuated. Previously, we showed that MSMB and NCOA4 participate in prostate cancer pathogenesis. Suppressing the expression of NUDT11, SLC22A3, and HNF1B influences cellular phenotypes associated with tumor-related properties in prostate cancer cells. Taken together, the data suggest that these transcripts contribute to prostate cancer pathogenesis.