Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross D. Hannan is active.

Publication


Featured researches published by Ross D. Hannan.


Molecular and Cellular Biology | 2003

mTOR-Dependent Regulation of Ribosomal Gene Transcription Requires S6K1 and Is Mediated by Phosphorylation of the Carboxy-Terminal Activation Domain of the Nucleolar Transcription Factor UBF†

Katherine M. Hannan; Yves Brandenburger; Anna Jenkins; Kerith Sharkey; Alice H. Cavanaugh; Lawrence I. Rothblum; Tom Moss; Gretchen Poortinga; Grant A. McArthur; Richard B. Pearson; Ross D. Hannan

ABSTRACT Mammalian target of rapamycin (mTOR) is a key regulator of cell growth acting via two independent targets, ribosomal protein S6 kinase 1 (S6K1) and 4EBP1. While each is known to regulate translational efficiency, the mechanism by which they control cell growth remains unclear. In addition to increased initiation of translation, the accelerated synthesis and accumulation of ribosomes are fundamental for efficient cell growth and proliferation. Using the mTOR inhibitor rapamycin, we show that mTOR is required for the rapid and sustained serum-induced activation of 45S ribosomal gene transcription (rDNA transcription), a major rate-limiting step in ribosome biogenesis and cellular growth. Expression of a constitutively active, rapamycin-insensitive mutant of S6K1 stimulated rDNA transcription in the absence of serum and rescued rapamycin repression of rDNA transcription. Moreover, overexpression of a dominant-negative S6K1 mutant repressed transcription in exponentially growing NIH 3T3 cells. Rapamycin treatment led to a rapid dephosphorylation of the carboxy-terminal activation domain of the rDNA transcription factor, UBF, which significantly reduced its ability to associate with the basal rDNA transcription factor SL-1. Rapamycin-mediated repression of rDNA transcription was rescued by purified recombinant phosphorylated UBF and endogenous UBF from exponentially growing NIH 3T3 cells but not by hypophosphorylated UBF from cells treated with rapamycin or dephosphorylated recombinant UBF. Thus, mTOR plays a critical role in the regulation of ribosome biogenesis via a mechanism that requires S6K1 activation and phosphorylation of UBF.


Genome Research | 2010

ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells

Lee H. Wong; James Derrick Robert McGhie; Marcus L J Sim; Melissa Anderson; Soyeon Ahn; Ross D. Hannan; Amee J. George; Kylie A Morgan; Jeffrey R. Mann; Andy Choo

ATRX (alpha thalassemia/mental retardation syndrome X-linked) belongs to the SWI2/SNF2 family of chromatin remodeling proteins. Besides the ATPase/helicase domain at its C terminus, it contains a PHD-like zinc finger at the N terminus. Mutations in the ATRX gene are associated with X-linked mental retardation (XLMR) often accompanied by alpha thalassemia (ATRX syndrome). Although ATRX has been postulated to be a transcriptional regulator, its precise roles remain undefined. We demonstrate ATRX localization at the telomeres in interphase mouse embryonic stem (ES) cells in synchrony with the incorporation of H3.3 during telomere replication at S phase. Moreover, we found that chromobox homolog 5 (CBX5) (also known as heterochromatin protein 1 alpha, or HP1 alpha) is also present at the telomeres in ES cells. We show by coimmunoprecipitation that this localization is dependent on the association of ATRX with histone H3.3, and that mutating the K4 residue of H3.3 significantly diminishes ATRX and H3.3 interaction. RNAi-knockdown of ATRX induces a telomere-dysfunction phenotype and significantly reduces CBX5 enrichment at the telomeres. These findings suggest a novel function of ATRX, working in conjunction with H3.3 and CBX5, as a key regulator of ES-cell telomere chromatin.


Cancer Cell | 2012

Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific Activation of p53

Megan J. Bywater; Gretchen Poortinga; Elaine Sanij; Nadine Hein; Abigail Peck; Carleen Cullinane; Meaghan Wall; Leonie A. Cluse; Denis Drygin; Kenna Anderes; Nanni Huser; Chris Proffitt; Joshua Bliesath; Mustapha Haddach; Michael K. Schwaebe; David Ryckman; William G. Rice; Clemens A. Schmitt; Scott W. Lowe; Ricky W. Johnstone; Richard B. Pearson; Grant A. McArthur; Ross D. Hannan

Increased transcription of ribosomal RNA genes (rDNA) by RNA Polymerase I is a common feature of human cancer, but whether it is required for the malignant phenotype remains unclear. We show that rDNA transcription can be therapeutically targeted with the small molecule CX-5461 to selectively kill B-lymphoma cells in vivo while maintaining a viable wild-type B cell population. The therapeutic effect is a consequence of nucleolar disruption and activation of p53-dependent apoptotic signaling. Human leukemia and lymphoma cell lines also show high sensitivity to inhibition of rDNA transcription that is dependent on p53 mutational status. These results identify selective inhibition of rDNA transcription as a therapeutic strategy for the cancer specific activation of p53 and treatment of hematologic malignancies.


Cancer Research | 2011

Targeting RNA Polymerase I with an Oral Small Molecule CX-5461 Inhibits Ribosomal RNA Synthesis and Solid Tumor Growth

Denis Drygin; Amy M. Lin; Josh Bliesath; Caroline Ho; Sean O'Brien; Chris Proffitt; Mayuko Omori; Mustapha Haddach; Michael K. Schwaebe; Adam Siddiqui-Jain; Nicole Streiner; Jaclyn Quin; Elaine Sanij; Megan J. Bywater; Ross D. Hannan; David Ryckman; Kenna Anderes; William G. Rice

Deregulated ribosomal RNA synthesis is associated with uncontrolled cancer cell proliferation. RNA polymerase (Pol) I, the multiprotein complex that synthesizes rRNA, is activated widely in cancer. Thus, selective inhibitors of Pol I may offer a general therapeutic strategy to block cancer cell proliferation. Coupling medicinal chemistry efforts to tandem cell- and molecular-based screening led to the design of CX-5461, a potent small-molecule inhibitor of rRNA synthesis in cancer cells. CX-5461 selectively inhibits Pol I-driven transcription relative to Pol II-driven transcription, DNA replication, and protein translation. Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines. CX-5461 is orally bioavailable and demonstrates in vivo antitumor activity against human solid tumors in murine xenograft models. Our findings position CX-5461 for investigational clinical trials as a potent, selective, and orally administered agent for cancer treatment.


Growth Factors Journal | 2007

Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function

Katarzyna Jastrzebski; Katherine M. Hannan; Elissaveta B. Tchoubrieva; Ross D. Hannan; Richard B. Pearson

Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.


Circulation Research | 2003

Direct Actions of Urotensin II on the Heart. Implications for Cardiac Fibrosis and Hypertrophy

Alex Tzanidis; Ross D. Hannan; Walter G. Thomas; Döne Onan; Dominic J. Autelitano; Fiona See; Darren J. Kelly; Richard E. Gilbert; Henry Krum

Abstract— Urotensin II (UII) is a somatostatin-like peptide recently identified as a potent vasoconstrictor. In this study, we examined whether UII promotes cardiac remodeling through nonhemodynamic effects on the myocardium. In a rat model of heart failure after myocardial infarction (MI), increased UII peptide and UII receptor protein expression was observed in both infarct and noninfarct regions of the left ventricle compared with sham. Moreover, post-MI remodeling was associated with a significant 75% increase in UII receptor gene expression in the heart (P <0.05 versus sham controls), with this increase noted in both regions of the left ventricle. In vitro, UII (10−7 mol/L) stimulation of neonatal cardiac fibroblasts increased the level of mRNA transcripts for procollagens &agr;1(I), &agr;1(III), and fibronectin by 139±15% (P <0.01), 59±5% (P <0.05), and 141±14% (P <0.01), respectively, with a concomitant 23±2% increase in collagen peptide synthesis as determined by 3H-proline incorporation (P <0.01). UII had no effect on cellular hypertrophy, as determined by changes in total protein content in isolated neonatal cardiomyocytes. However, expression of recombinant rat UII receptor in neonatal cardiomyocytes resulted in significant UII-dependent activation of hypertrophic signaling as demonstrated by increased total protein content (unstimulated, 122.4±4.0 &mgr;g/well; rat UII, 147.6±7.0 &mgr;g/well; P <0.01) and activation of the hypertrophic phenotype through G&agr;q- and Ras-dependent pathways. These results indicate that, in addition to potent hemodynamic effects, UII may be implicated in myocardial fibrogenesis through increased collagen synthesis by cardiac fibroblasts and may also be an important determinant of pathological cardiac hypertrophy in conditions characterized by UII receptor upregulation.


Nature Reviews Cancer | 2010

The renin–angiotensin system and cancer: old dog, new tricks

Amee J. George; Walter G. Thomas; Ross D. Hannan

For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin–angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.


The EMBO Journal | 2004

MAD1 and c‐MYC regulate UBF and rDNA transcription during granulocyte differentiation

Gretchen Poortinga; Katherine M. Hannan; Hayley Snelling; Carl R. Walkley; Anna Jenkins; Kerith Sharkey; Meaghan Wall; Yves Brandenburger; Manuela Palatsides; Richard B. Pearson; Grant A. McArthur; Ross D. Hannan

The regulation of cell mass (cell growth) is often tightly coupled to the cell division cycle (cell proliferation). Ribosome biogenesis and the control of rDNA transcription through RNA polymerase I are known to be critical determinants of cell growth. Here we show that granulocytic cells deficient in the c‐MYC antagonist MAD1 display increased cell volume, rDNA transcription and protein synthesis. MAD1 repressed and c‐MYC activated rDNA transcription in nuclear run‐on assays. Repression of rDNA transcription by MAD1 was associated with its ability to interact directly with the promoter of upstream binding factor (UBF), an rDNA regulatory factor. Conversely, c‐MYC activated transcription from the UBF promoter. Using siRNA, UBF was shown to be required for c‐MYC‐induced rDNA transcription. These data demonstrate that MAD1 and c‐MYC reciprocally regulate rDNA transcription, providing a mechanism for coordination of ribosome biogenesis and cell growth under conditions of sustained growth inhibition such as granulocyte differentiation.


Clinical and Experimental Pharmacology and Physiology | 2003

Cardiac hypertrophy: A matter of translation

Ross D. Hannan; Anna Jenkins; Ak Jenkins; Yves Brandenburger

1. Left ventricular hypertrophy (LVH) of the heart is an adaptive response to sustained increases in blood pressure and hormone imbalances. Left ventricular hypertrophy is associated with programmed responses at the molecular and biochemical level in different subsets of cardiac cells, including the cardiac muscle cells (cardiomyocytes), fibroblasts, conductive tissue and coronary vasculature.


Journal of Cell Biology | 2008

UBF levels determine the number of active ribosomal RNA genes in mammals

Elaine Sanij; Gretchen Poortinga; Kerith Sharkey; Sandy S. C. Hung; Timothy P. Holloway; Jaclyn Quin; Elysia Robb; Lee H. Wong; Walter G. Thomas; Victor Y. Stefanovsky; Tom Moss; Lawrence I. Rothblum; Katherine M. Hannan; Grant A. McArthur; Richard B. Pearson; Ross D. Hannan

In mammals, the mechanisms regulating the number of active copies of the ∼200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1–induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.

Collaboration


Dive into the Ross D. Hannan's collaboration.

Top Co-Authors

Avatar

Richard B. Pearson

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Katherine M. Hannan

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Grant A. McArthur

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Gretchen Poortinga

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Elaine Sanij

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carleen Cullinane

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Ricky W. Johnstone

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Donald P. Cameron

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge