Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross H. McKenzie is active.

Publication


Featured researches published by Ross H. McKenzie.


Chemical Reviews | 2016

Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges

Michele Ceriotti; Wei Fang; Peter G. Kusalik; Ross H. McKenzie; Angelos Michaelides; Miguel A. Morales; Thomas E. Markland

Nuclear quantum effects influence the structure and dynamics of hydrogen-bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory, and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in waters properties. These have been combined with theoretical developments such as the introduction of the principle of competing quantum effects that allows the subtle interplay of waters quantum effects and their manifestation in experimental observables to be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in waters isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in this area of research.


Journal of Chemical Physics | 2004

A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers.

B. J. Powell; Tunna Baruah; Noam Bernstein; K. Brake; Ross H. McKenzie; Paul Meredith; Mark R. Pederson

We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, Delta(HL). We show that Delta(HL) is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in Delta(HL) to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness

Jeffrey R. Reimers; Laura K. McKemmish; Ross H. McKenzie; Alan E. Mark; Noel S. Hush

In 1968, Fröhlich showed that a driven set of oscillators can condense with nearly all of the supplied energy activating the vibrational mode of lowest frequency. This is a remarkable property usually compared with Bose–Einstein condensation, superconductivity, lasing, and other unique phenomena involving macroscopic quantum coherence. However, despite intense research, no unambiguous example has been documented. We determine the most likely experimental signatures of Fröhlich condensation and show that they are significant features remote from the extraordinary properties normally envisaged. Fröhlich condensates are classified into 3 types: weak condensates in which profound effects on chemical kinetics are possible, strong condensates in which an extremely large amount of energy is channeled into 1 vibrational mode, and coherent condensates in which this energy is placed in a single quantum state. Coherent condensates are shown to involve extremely large energies, to not be produced by the Wu–Austin dynamical Hamiltonian that provides the simplest depiction of Fröhlich condensates formed using mechanically supplied energy, and to be extremely fragile. They are inaccessible in a biological environment. Hence the Penrose–Hameroff orchestrated objective-reduction model and related theories for cognitive function that embody coherent Fröhlich condensation as an essential element are untenable. Weak condensates, however, may have profound effects on chemical and enzyme kinetics, and may be produced from biochemical energy or from radio frequency, microwave, or terahertz radiation. Pokornýs observed 8.085-MHz microtubulin resonance is identified as a possible candidate, with microwave reactors (green chemistry) and terahertz medicine appearing as other feasible sources.


Reports on Progress in Physics | 2011

Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors

B. J. Powell; Ross H. McKenzie

We review the interplay of frustration and strong electronic correlations in quasi-two-dimensional organic charge transfer salts, such as (BEDT-TTF)2X and EtnMe4−nPn[Pd(dmit)2]2. These two forces drive a range of exotic phases including spin liquids, valence bond crystals, pseudogapped metals and unconventional superconductivity. Of particular interest is that in several materials pressure drives a first-order transition from a spin liquid Mott insulating state to a superconducting state. Experiments on these materials raise a number of profound questions about the quantum behaviour of frustrated systems, particularly the intimate connection between spin liquids and superconductivity. Insights into these questions have come from a wide range of theoretical techniques including first principles electronic structure, quantum many-body theory and quantum field theory. In this review we introduce some of the basic ideas of the field by discussing a simple frustrated Heisenberg model with four spins. We then describe the key experimental results, emphasizing that for two materials, κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, there is strong evidence for a spin liquid ground state, and for another, EtMe3P[Pd(dmit)2]2, there is evidence of a valence bond crystal ground state. We review theoretical attempts to explain these phenomena, arguing that they can be captured by a Hubbard model on the anisotropic triangular lattice at half filling, and that resonating valence bond wavefunctions capture most of the essential physics. We review evidence that this Hubbard model can have a spin liquid ground state for a range of parameters that are realistic for the relevant materials. In particular, spatial anisotropy and ring exchange are key to destabilizing magnetic order. We conclude by summarizing the progress made thus far and identifying some of the key questions still to be answered.


Physical Review B | 2000

Transport properties of strongly correlated metals: A dynamical mean-field approach

J. Merino; Ross H. McKenzie

The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.


Physical Review A | 2003

Entanglement of two-mode Bose-Einstein condensates

Andrew P. Hines; Ross H. McKenzie; G. J. Milburn

We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates-a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.


Physical Review B | 2002

Temperature dependence of polaronic transport through single molecules and quantum dots

Urban Lundin; Ross H. McKenzie

Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.


Physical Review B | 1999

Comparison of coherent and weakly incoherent transport models for the interlayer magnetoresistance of layered Fermi liquids

Perez Moses; Ross H. McKenzie

The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].


Physical Review Letters | 1998

INCOHERENT INTERLAYER TRANSPORT AND ANGULAR-DEPENDENT MAGNETORESISTANCE OSCILLATIONS IN LAYERED METALS

Ross H. McKenzie; Perez Moses

The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent transport. Consequently, the existence of a three-dimensional Fermi surface is not necessary to explain the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction is varied. [S0031-9007(98)07660-1].


Nature Physics | 2006

Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor

Majed Abdel-Jawad; Malcolm P. Kennett; L. Balicas; Antony Carrington; A. P. Mackenzie; Ross H. McKenzie; Nigel E. Hussey

The metallic state of high-temperature copper-oxide superconductors, characterized by unusual and distinct temperature dependences in the transport properties1,2,3,4, is markedly different from that of textbook metals. Despite intense theoretical efforts5,6,7,8,9,10,11, our limited understanding is impaired by our inability to determine experimentally the temperature and momentum dependence of the transport scattering rate. Here, we use a powerful magnetotransport probe to show that the resistivity and the Hall coefficient in highly doped Tl2Ba2CuO6+δ originate from two distinct inelastic scattering channels. One channel is due to conventional electron–electron scattering; the other is highly anisotropic, has the same symmetry as the superconducting gap and a magnitude that grows approximately linearly with temperature. The observed form and anisotropy place tight constraints on theories of the metallic state. Moreover, in heavily doped non-superconducting La2−xSrxCuO4, this anisotropic scattering term is absent12, suggesting an intimate connection between the origin of this scattering and superconductivity itself.

Collaboration


Dive into the Ross H. McKenzie's collaboration.

Top Co-Authors

Avatar

B. J. Powell

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Links

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. F. Smith

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

G. J. Milburn

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

R.P. Starrett

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

R. Newbury

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge