Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross J. Friel is active.

Publication


Featured researches published by Ross J. Friel.


Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications | 2010

A nanometre-scale fibre-to-matrix interface characterization of an ultrasonically consolidated metal matrix composite

Ross J. Friel; Russell A. Harris

Future ‘smart’ structures have the potential to revolutionize many engineering applications. One of the possible methods for creating smart structures is through the use of shape memory alloy (SMA) fibres embedded into metal matrices. Ultrasonic consolidation (UC) allows the embedding of SMAs into metal matrices while retaining the SMAs intrinsic recoverable deformation property. In this work, NiTi SMA fibres were successfully embedded into an Al 3003 (0) matrix via the UC layer manufacturing process. Initially the plastic flow of the Al matrix and the degree of fibre encapsulation were observed using optical microscopy. Then microstructural grain and sub-grain size variation of the Al 3003 (0) matrix at the fibre—matrix interface, and the nature of the fibre—matrix bonding mechanism, were studied via the use of focused ion beam (FIB) cross-sectioning, FIB imaging, scanning electron microscopy, and mechanical peel testing. The results show that the inclusion of the NiTi SMA fibres had a significant effect on the surrounding Al matrix microstructure during the UC process. Additionally, the fibre—matrix bonding mechanism appeared to be mechanical entrapment with the SMA surface showing signs of fatigue from the UC embedding process.


Rapid Prototyping Journal | 2016

3D printing with moondust

Athanasios Goulas; Ross J. Friel

Purpose The purpose of this paper is to investigate the effect of the main process parameters of laser melting (LM) type additive manufacturing (AM) on multi-layered structures manufactured from JSC-1A Lunar regolith (Moondust) simulant powder. Design/methodology/approach Laser diffraction technology was used to analyse and confirm the simulant powder material particle sizes and distribution. Geometrical shapes were then manufactured on a Realizer SLM™ 100 using the simulant powder. The laser-processed samples were analysed via scanning electron microscopy to evaluate surface and internal morphologies, X-ray fluorescence spectroscopy to analyse the chemical composition after processing, and the samples were mechanically investigated via Vickers micro-hardness testing. Findings A combination of process parameters resulting in an energy density value of 1.011 J/mm2 allowed the successful production of components directly from Lunar regolith simulant. An internal relative porosity of 40.8 per cent, material hardness of 670 ± 11 HV and a dimensional accuracy of 99.8 per cent were observed in the fabricated samples. Originality/value This research paper is investigating the novel application of a powder bed fusion AM process category as a potential on-site manufacturing approach for manufacturing structures/components out of Lunar regolith (Moondust). It was shown that this AM process category has the capability to directly manufacture multi-layered parts out of Lunar regolith, which has potential applicability to future moon colonization.


Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture | 2017

New concept to aid efficient fibre integration into metal matrices during ultrasonic consolidation

Simona Masurtschak; Ross J. Friel; Russell A. Harris

Ultrasonic consolidation has been shown to be a viable metal-matrix-based smart composite additive layer manufacturing process. Yet, high quantity fibre integration has presented the requirement for a method of accurate positioning and fibre protection to maintain the fibre layout during ultrasonic consolidation. This study presents a novel approach for fibre integration during ultrasonic consolidation: channels are manufactured by laser processing on an ultrasonically consolidated sample. At the same time, controlled melt ejection is applied to aid accurate fibre placement and simultaneously reducing fibre damage occurrences. Microscopic, scanning electron microscopic and energy dispersive X-ray spectroscopic analyses are used for samples containing up to 10.5% fibres, one of the highest volumes in an ultrasonically consolidated composite so far. Up to 98% of the fibres remain in the channels after consolidation and fibre damage is reduced to less than 2% per sample. This study furthers the knowledge of high volume fibre embedment via ultrasonic consolidation for future smart material manufacturing.


Power Ultrasonics: Applications of High-Intensity Ultrasound; pp 313-335 (2014) | 2014

Power ultrasonics for additive manufacturing and consolidating of materials

Ross J. Friel

This chapter explores the ultrasonic additive manufacturing (UAM) advanced solid-state metal additive/subtractive manufacturing process that combines ultrasonic welding and computer numerical control milling to fabricate solid metal components, layer-by-layer, from metal foils. The chapter will discuss the three key abilities of UAM: complicated geometries, dissimilar material bonding, and object embedment. The combination of these three key abilities places UAM as a most attractive method with which to create metal matrix-based freeform smart structures for high-value engineering applications.


Laser Additive Manufacturing#R##N#Materials, Design, Technologies, and Applications | 2017

Laser sintering of ceramic materials for aeronautical and astronautical applications

Athanasios Goulas; Ross J. Friel

Abstract Ceramic products have been manufactured for many decades via conventional techniques such as extrusion, oven sintering, and casting. However, these methods have several inherent disadvantages with regard to the possible shape and structure, which limits their application range. The advent of laser additive manufacturing (LAM) is a key enabler in creating ceramic components with considerably greater design freedom. The technology is allowing the creation of ceramic components that not only meet the increasing material requirements of aero/astro applications but also provide new opportunities in terms of the complex structures that can now be produced. Ceramics represents a new frontier for these LAM systems – one with many challenges and research needs; however, the material properties that ceramics offer over polymers and metals make the additive manufacturing of ceramic components an enticing engineering opportunity for aerospace, astronautical and potentially many other technology areas. This chapter presents an overview of the state of the art of ceramic materials in LAM for aerospace and astronautic applications. Section 14.2 explains the fundamentals of ceramic materials and includes examples of their traditional manufacturing methods. Section 14.3 focuses on the application of ceramic materials to the challenging engineering realm of aeronautics and astronautics, accompanied by examples from their main application areas (eg, thermal and ballistic shielding). Section 14.4 goes into depth on LAM, explaining the challenges and implications of laser processing ceramics, the benefits of the approach and examples from the current state of the art. Finally, 14.5 Future developments , 14.6 Conclusions highlight some of the likely future developments in the area and conclude the chapter.


Journal of Engineering Materials and Technology-transactions of The Asme | 2015

Laser-Machined Microchannel Effect on Microstructure and Oxide Formation of an Ultrasonically Processed Aluminum Alloy

Simona Masurtschak; Ross J. Friel; Arnold Gillner; Joachim Ryll; Russell A. Harris

Ultrasonic consolidation (UC) has been proven to be a suitable method for fiber embedment into metal matrices. To aid successful embedment of high fiber volumes and to ensure their accurate positioning, research on producing microchannels in combination with adjacent shoulders formed by distribution of the melt onto unique UC sample surfaces with a fiber laser was carried out. This paper investigated the effect of the laser on the microstructure surrounding the channel within an Al 3003-H18 sample. The heat input and the extent of the heat-affected zone (HAZ) from one and multiple passes was examined. The paper explored the influence of air, as an assist gas, on the shoulders and possible oxide formation with regards to future bonding requirements during UC. The authors found that one laser pass resulted in a keyhole-shaped channel filled with a mixture of aluminum and oxides and a symmetrical HAZ surrounding the channel. Multiple passes resulted in the desired channel shape and a wide HAZ which appeared to be an eutectic microstructure. The distribution of molten material showed oxide formation all along the channel outline and especially within the shoulder.


Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications | 2018

Mechanical behaviour of additively manufactured lunar regolith simulant components

Athanasios Goulas; Jon Binner; Daniel S. Engstrom; Russell A. Harris; Ross J. Friel

Additive manufacturing and its related techniques have frequently been put forward as a promising candidate for planetary in-situ manufacturing, from building life-sustaining habitats on the Moon to fabricating various replacements parts, aiming to support future extra-terrestrial human activity. This paper investigates the mechanical behaviour of lunar regolith simulant material components, which is a potential future space engineering material, manufactured by a laser-based powder bed fusion additive manufacturing system. The influence of laser energy input during processing was associated with the evolution of component porosity, measured via optical and scanning electron microscopy in combination with gas expansion pycnometry. The compressive strength performance and Vickers micro-hardness of the components were analysed and related back to the processing history and resultant microstructure of the lunar regolith simulant build material. Fabricated structures exhibited a relative porosity of 44–49% and densities ranging from 1.76 to 2.3 g cm−3, with a maximum compressive strength of 4.2 ± 0.1 MPa and elastic modulus of 287.3 ± 6.6 MPa, the former is comparable to a typical masonry clay brick (3.5 MPa). The additive manufacturing parts also had an average hardness value of 657 ± 14 HV0.05/15, better than borosilicate glass (580 HV). This study has shed significant insight into realising the potential of a laser-based powder bed fusion additive manufacturing process to deliver functional engineering assets via in-situ and abundant material sources that can be potentially used for future engineering applications in aerospace and astronautics.


Rapid Prototyping Journal | 2017

Enabling internal electronic circuitry within additively manufactured metal structures – The effect and importance of inter-laminar topography

Ji Li; Tom Monaghan; Robert W. Kay; Ross J. Friel; Russell A. Harris

Purpose This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and insulators) at the interlaminar interface of parts during manufacture to allow the integration of functional and optimal electrical circuitries inside dense metallic objects without detrimental effect on the overall mechanical integrity. This holds promise to release transformative device functionality and applications of smart metallic devices and products. Design/methodology/approach To ensure the proper electrical insulation between the printed conductors and metal matrices, an insulation layer with sufficient thickness is required to accommodate the rough interlaminar surface which is inherent to the UAM process. This in turn increases the total thickness of printed circuitries and thereby adversely affects the integrity of the UAM part. A specific solution is proposed to optimise the rough interlaminar surface through deforming the UAM substrates via sonotrode rolling or UAM processing. Findings The surface roughness (Sa) could be reduced from 4.5 to 4.1 µm by sonotrode rolling and from 4.5 to 0.8 µm by ultrasonic deformation. Peel testing demonstrated that sonotrode-rolled substrates could maintain their mechanical strength, while the performance of UAM-deformed substrates degraded under same welding conditions ( approximately 12 per cent reduction compared with undeformed substrates). This was attributed to the work hardening of deformation process which was identified via dual-beam focussed ion beam–scanning electron microscope investigation. Originality/value The sonotrode rolling was identified as a viable methodology in allowing printed electrical circuitries in UAM. It enabled a decrease in the thickness of printed electrical circuitries by ca. 25 per cent.


international spring seminar on electronics technology | 2015

The effect of ultrasonic excitation on the electrical properties and microstructure of printed electronic conductive inks

Alkaios Bournias-Varotsis; Russell A. Harris; Ross J. Friel

Ultrasonic Additive Manufacturing (UAM) is an advanced manufacturing technique, which enables the embedding of electronic components and interconnections within solid aluminium structures, due to the low temperature encountered during material bonding. In this study, the effects of ultrasonic excitation, caused by the UAM process, on the electrical properties and the microstructure of thermally cured screen printed silver conductive inks were investigated. The electrical resistance and the dimensions of the samples were measured and compared before and after the ultrasonic excitation. The microstructure of excited and unexcited samples was examined using combined Focused Ion Beam and Scanning Electron Microscopy (FIB/SEM) and optical microscopy. The results showed an increase in the resistivity of the silver tracks after the ultrasonic excitation, which was correlated with a change in the microstructure: the size of the silver particles increased after the excitation, suggesting that inter-particle bonding has occurred. The study also highlighted issues with short circuiting between the conductive tracks and the aluminium substrate, which were attributed to the properties of the insulating layer and the inherent roughness of the UAM substrate. However, the reduction in conductivity and observed short circuiting were sufficiently small and rare, which leads to the conclusion that printed conductive tracks can function as interconnects in conjunction with UAM, for the fabrication of novel smart metal components.


Procedia CIRP | 2013

Ultrasonic additive manufacturing A hybrid production process for novel functional products

Ross J. Friel; Russell A. Harris

Collaboration


Dive into the Ross J. Friel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Li

Loughborough University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel S. Engstrom

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Binner

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge