Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ross Jeffree is active.

Publication


Featured researches published by Ross Jeffree.


PLOS ONE | 2010

Response of the Arctic Pteropod Limacina helicina to Projected Future Environmental Conditions

Steeve Comeau; Ross Jeffree; Jean-Louis Teyssié; Jean-Pierre Gattuso

Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.


The Journal of Experimental Biology | 2011

Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification

Sophie Martin; Sophie Richier; Maria-Luiza Pedrotti; Sam Dupont; Charlotte Castejon; Yannis Gerakis; Marie-Emmanuelle Kerros; François Oberhänsli; Jean-Louis Teyssié; Ross Jeffree; Jean-Pierre Gattuso

SUMMARY Ocean acidification is predicted to have significant effects on benthic calcifying invertebrates, in particular on their early developmental stages. Echinoderm larvae could be particularly vulnerable to decreased pH, with major consequences for adult populations. The objective of this study was to understand how ocean acidification would affect the initial life stages of the sea urchin Paracentrotus lividus, a common species that is widely distributed in the Mediterranean Sea and the NE Atlantic. The effects of decreased pH (elevated PCO2) were investigated through physiological and molecular analyses on both embryonic and larval stages. Eggs and larvae were reared in Mediterranean seawater at six pH levels, i.e. pHT 8.1, 7.9, 7.7, 7.5, 7.25 and 7.0. Fertilization success, survival, growth and calcification rates were monitored over a 3 day period. The expression of genes coding for key proteins involved in development and biomineralization was also monitored. Paracentrotus lividus appears to be extremely resistant to low pH, with no effect on fertilization success or larval survival. Larval growth was slowed when exposed to low pH but with no direct impact on relative larval morphology or calcification down to pHT 7.25. Consequently, at a given time, larvae exposed to low pH were present at a normal but delayed larval stage. More surprisingly, candidate genes involved in development and biomineralization were upregulated by factors of up to 26 at low pH. Our results revealed plasticity at the gene expression level that allows a normal, but delayed, development under low pH conditions.


Journal of Environmental Radioactivity | 2013

The IAEA handbook on radionuclide transfer to wildlife

B.J. Howard; N.A. Beresford; David Copplestone; D. Telleria; G. Proehl; Ross Jeffree; T. Yankovich; J.E. Brown; Kathryn A. Higley; Mathew P. Johansen; H. Mulye; Hildegarde Vandenhove; S. Gashchak; Michael D. Wood; Hyoe Takata; P. Andersson; Paul Dale; J. Ryan; A. Bollhöfer; C. Doering; C.L. Barnett; C. Wells

An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CRwo-media) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values. An overview of the compilation and analysis, and discussion of the extent and limitations of the data is presented. Example comparisons of the CRwo-media values are given for polonium across all wildlife groups and ecosystems and for molluscs for all radionuclides. The CRwo-media values have also been compared with those currently used in the ERICA Tool which represented the most complete published database for wildlife transfer values prior to this work. The use of CRwo-media values is a pragmatic approach to predicting radionuclide activity concentrations in wildlife and is similar to that used for screening assessments for the human food chain. The CRwo-media values are most suitable for a screening application where there are several conservative assumptions built into the models which will, to varying extents, compensate for the variable data quality and quantity, and associated uncertainty.


Marine Biology | 2013

Towards improved socio-economic assessments of ocean acidification’s impacts

Nathalie Hilmi; Denis Allemand; Sam Dupont; Alain Safa; Gunnar Haraldsson; Paulo A. L. D. Nunes; Chris Moore; Caroline Hattam; Stéphanie Reynaud; Jason M. Hall-Spencer; Maoz Fine; Cm Turley; Ross Jeffree; James C. Orr; Philip L. Munday; Sarah R. Cooley

Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.


Marine Pollution Bulletin | 2008

First experiments on the maternal transfer of metals in the cuttlefish Sepia officinalis

Thomas Lacoue-Labarthe; Michel Warnau; François Oberhänsli; Jean-Louis Teyssié; Ross Jeffree; Paco Bustamante

The aim of this study was to provide a first insight on the incorporation of eight metals in the eggs of the cuttlefish Sepia officinalis via maternal transfer, using radiotracer techniques ((110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn). The cuttlefish was fed daily with radiolabelled crabs for two weeks; it then started to spawn every three days. Among the eight tracers, only (110m)Ag, (75)Se and (65)Zn were significantly transferred to the eggs. The radiotracer distribution among the egg compartments showed that (75)Se and (65)Zn were accumulated mainly in the vitellus whereas (110m)Ag was found in similar proportion in the vitellus and the eggshell. During the embryonic development, (75)Se and (65)Zn contained in the vitellus were progressively transferred to the embryo, likely to supply its metabolic needs in these essential elements. Although it has no known biological functions, Ag contained in both vitellus and eggshell was also transferred to the embryo. Overall, our results showed that transfer of Ag, Se, and Zn does actually occur from a female cuttlefish to its eggs, at least during the last two weeks before spawning.


Aquatic Toxicology | 2010

Cadmium bioaccumulation and retention kinetics in the Chilean blue mussel Mytilus chilensis: seawater and food exposure pathways.

Pedro Hervé-Fernández; Fanny Houlbrèque; Florence Boisson; Sandor Mulsow; Jean-Louis Teyssié; François Oberhaënsli; Sabine Azemard; Ross Jeffree

The Chilean blue mussel (Mytilus chilensis, Hupe 1854) represents the most important bivalve exploited along the Chilean coast and is a major food source for the Chilean population. Unfortunately, local fish and shellfish farming face severe problems as a result of bioaccumulation of toxic trace metals into shellfishes. Blue mussels collected along the Chilean coasts contain levels of Cd above the regulatory limits for human consumption. In this study, we examined the bioaccumulation, depuration and organ distribution of Cd in the M. chilensis, from 109Cd-labelled bulk seawater and from feeding with 109Cd-labelled algae. The uptake of 109Cd via seawater displayed a simple exponential kinetic model suggesting that cadmium activity tends to reach an equilibrium value of 1.838+/-0.175 ng g(-1) (mean+/-asymptotic standard error, p < 0.001) after 78+/-9 days. The depuration rate for 109Cd accumulated via seawater was slow, with only 21% of the total 109Cd accumulated in the whole mussel being eliminated after 52 days. Total elimination of Cd in mussels was adequately described by a double component kinetic model, in which the biological half-life for the long-lived component represents more than 6 months. In contrast, depuration after radiolabelled food uptake was fast, reaching only 20% of retention in 10 days. This knowledge of the long half-life of cadmium accumulated via seawater as well as the non-negligible level of cadmium accumulated into the shells is relevant to the management of Cd levels in this species and the refinement of detoxification processes in order to comply with authorized Cd levels.


Science of The Total Environment | 2010

Phylogenetic consistencies among chondrichthyan and teleost fishes in their bioaccumulation of multiple trace elements from seawater.

Ross Jeffree; François Oberhänsli; Jean-Louis Teyssié

Multi-tracer experiments determined the accumulation from seawater of selected radioactive trace elements (Mn-54, Co-60, Zn-65, Cs-134, Am-241, Cd-109, Ag-110m, Se-75 and Cr-51) by three teleost and three chondrichthyan fish species to test the hypothesis that these phylogenetic groups have different bioaccumulation characteristics, based on previously established contrasts between the carcharhiniform chondrichthyan Scyliorhinus canicula (dogfish) and the pleuronectiform teleost Psetta maxima (turbot). Discriminant function analysis on whole body: water concentration factors (CFs) separated dogfish and turbot in two independent experiments. Classification functions grouped the perciform teleosts, seabream (Sparus aurata) and seabass (Dicentrarchus labrax), with turbot and grouped the chondrichthyans, undulate ray (Raja undulata; Rajiformes) and spotted torpedo (Torpedo marmorata; Torpediniformes), with dogfish, thus supporting our hypothesis. Hierarchical classificatory, multi-dimensional scaling and similarity analyses based on the CFs for the nine radiotracers, also separated all three teleosts (that aggregated lower in the hierarchy) from the three chondrichthyan species. The three chondrichthyans were also more diverse amongst themselves compared to the three teleosts. Particular trace elements that were more important in separating teleosts and chondrichthyans were Cs-134 that was elevated in teleosts and Zn-65 that was elevated in chondrichthyans, these differences being due to their differential rates of uptake rather than loss. Chondrichthyans were also higher in Cr-51, Co-60, Ag-110m and Am-241, whereas teleosts were higher only in Mn-54. These contrasts in bioaccumulation patterns between teleosts and chondrichthyans are interpreted in the context of both proximate causes of underlying differences in physiology and anatomy, as well as the ultimate cause of their evolutionary divergence over more than 500million years before present (MyBP). Our results and interpretation point to the possibility that radiation exposure regimes may be influenced by phylogeny, with implications for the adequacy of the marine reference organism approach in marine environmental protection.


ChemBioChem | 2011

New Insight into Marine Alkaloid Metabolic Pathways: Revisiting Oroidin Biosynthesis.

Grégory Genta-Jouve; Nadja Cachet; Serge Holderith; François Oberhänsli; Jean-Louis Teyssié; Ross Jeffree; Ali Al Mourabit; O. Thomas

Sponge natural product biosynthesis: A highly sensitive in vivo protocol based on (14)C radiolabeled precursors and beta-imager autoradiography allowed the unraveling of the origin of the pyrrole 2-aminoimidazole-containing key biosynthetic intermediate oroidin. Proline and lysine are now proposed as the early precursors of the pyrrole and the 2-aminoimidazole moieties of oroidin respectively.


Aquatic Toxicology | 2013

Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

Helena C. Reinardy; James R. Syrett; Ross Jeffree; Theodore B. Henry; Awadhesh N. Jha

Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. (60)Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC(50)) in larval zebrafish exposed (96 h) to 0-50 mg l(-1) Co was 35.3 ± 1.1 (95%C.I.) mg l(-1) Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l(-1)) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l(-1)) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l(-1)). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l(-1) Co relative to controls. Induction of 4.0 ± 0.9, 2.5 ± 0.7, and 3.1 ± 0.7-fold change (mean ± S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l(-1)). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.


Science of The Total Environment | 2011

Uptake, depuration, and radiation dose estimation in zebrafish exposed to radionuclides via aqueous or dietary routes

Helena C. Reinardy; Jean-Louis Teyssié; Ross Jeffree; David Copplestone; Theodore B. Henry; Awadhesh N. Jha

Understanding uptake and depuration of radionuclides in organisms is necessary to relate exposure to radiation dose and ultimately to biological effects. We investigated uptake and depuration of a mixture of radionuclides to link bioaccumulation with radiation dose in zebrafish, Danio rerio. Adult zebrafish were exposed to radionuclides ((54)Mn, (60)Co, (65)Zn, (75)Se, (109)Cd, (110m)Ag, (134)Cs and (241)Am) at tracer levels (<200 Bq g(-1)) for 14 d, either via water or diet. Radioactivity concentrations were measured in whole body and excised gonads of exposed fish during uptake (14 d) and depuration phases (47 d and 42 d for aqueous and dietary exposures respectively), and dose rates were modelled from activity concentrations in whole body and exposure medium (water or diet). After 14-day aqueous exposure, radionuclides were detected in decreasing activity concentrations: (75)Se>(65)Zn>(109)Cd>(110m)Ag>(54)Mn>(60)Co>(241)Am>(134)Cs (range: 175-8 Bq g(1)). After dietary exposure the order of radionuclide activity concentration in tissues (Bq g(-1)) was: (65)Zn>(60)Co>(75)Se>(109)Cd>(110m)Ag>(241)Am>(54)Mn>(134)Cs (range: 91-1 Bq g(-1)). Aqueous exposure resulted in higher whole body activity concentrations for all radionuclides except (60)Co. Route of exposure did not appear to influence activity concentrations in gonads, except for (54)Mn, (65)Zn, and (75)Se, which had higher activity concentrations in gonads following aqueous exposure. Highest gonad activity concentrations (Bq g(-1)) were for (75)Se (211), (109)Cd (142), and (65)Zn (117), and highest dose rates (μGy h(-1)) were from (241)Am (aqueous, 1050; diet 242). This study links radionuclide bioaccumulation data obtained in laboratory experiments with radiation dose determined by application of a dosimetry modelling tool, an approach that will enable better linkages to be made between exposure, dose, and effects of radionuclides in organisms.

Collaboration


Dive into the Ross Jeffree's collaboration.

Top Co-Authors

Avatar

Jean-Louis Teyssié

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

François Oberhänsli

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Florence Boisson

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riccardo Rodolfo-Metalpa

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge