Ross N. Bannister
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ross N. Bannister.
Tellus A | 2011
Stefano Migliorini; Mark Dixon; Ross N. Bannister; S. P. Ballard
A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convectivescale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.
Monthly Weather Review | 2007
Ross N. Bannister
Abstract Two wavelet-based control variable transform schemes are described and are used to model some important features of forecast error statistics for use in variational data assimilation. The first is a conventional wavelet scheme and the other is an approximation of it. Their ability to capture the position and scale-dependent aspects of covariance structures is tested in a two-dimensional latitude–height context. This is done by comparing the covariance structures implied by the wavelet schemes with those found from the explicit forecast error covariance matrix, and with a non-wavelet-based covariance scheme used currently in an operational assimilation scheme. Qualitatively, the wavelet-based schemes show potential at modeling forecast error statistics well without giving preference to either position or scale-dependent aspects. The degree of spectral representation can be controlled by changing the number of spectral bands in the schemes, and the least number of bands that achieves adequate resul...
Tellus A | 2011
Ross N. Bannister; Stefano Migliorini; Mark Dixon
A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study shortrange forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.
American Journal of Physics | 2003
Ross N. Bannister
Six parameters uniquely describe the orbit of a body about the Sun. Given these parameters, it is possible to make predictions of the body’s position by solving its equation of motion. The parameters cannot be directly measured, so they must be inferred indirectly by an inversion method which uses measurements of other quantities in combination with the equation of motion. Inverse techniques are valuable tools in many applications where only noisy, incomplete, and indirect observations are available for estimating parameter values. The methodology of the approach is introduced and the Kepler problem is used as a real-world example.
Monthly Weather Review | 2015
Ross N. Bannister
AbstractThis paper investigates the effect on balance of a number of Schur product–type localization schemes that have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a nonadaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes: a simplified version of Smoothed Ensemble Correlations Raised to a Power (SENCORP) and Ensemble Correlations Raised to a Power (ECO-RAP). The paper shows, the author believes for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately, but also minimizes disruption of balance (where the “correct” degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that ...
Archive | 2010
Ross N. Bannister
Data assimilation estimates the initial conditions of a weather forecast model by bringing together data from observations, and a forecast from a previously known atmospheric state. The forecast error covariance matrix is part of the assimilation and is very important in the way that the assimilation treats the data. This article shows how these error covariances for large-scale weather systems are represented using balance relationships. An example of how this method can be improved at large-scale is introduced, and contemporary issues are raised concerning how it can be adapted to model error covariances of small-scale phenomena, such as convection, where the balance approach breaks down.
Physical Review B | 2000
Ross N. Bannister; N. d'Ambrumenil
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.
Australian Meteorological and Oceanographic Journal | 2010
Alison M. Fowler; Ross N. Bannister; J. R. Eyre
The one-dimensional variational assimilation of vertical temperature information in the presence of a boundary-layer capping inversion is studied. For an optimal analysis of the vertical temperature profile, an accurate representation of the back - ground error covariances is essential. The background error covariances are highly flow-dependent due to the variability in the presence, structure and height of the boundary-layer capping inversion. Flow-dependent estimates of the background error covariances are shown by studying the spread in an ensemble of forecasts. A forecast of the temperature profile (used as a background state) may have a significant error in the position of the capping inversion with respect to observa- tions. It is shown that the assimilation of observations may weaken the inversion structure in the analysis if only magnitude errors are accounted for as is the case for traditional data assimilation methods used for operational weather prediction. The positional error is treated explicitly here in a new data assimilation scheme to reduce positional error, in addition to the traditional framework to reduce magni- tude error. The distribution of the positional error of the background inversion is estimated for use with the new scheme.
Quarterly Journal of the Royal Meteorological Society | 2008
Ross N. Bannister
Quarterly Journal of the Royal Meteorological Society | 2008
Ross N. Bannister