Rossano Cesari
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rossano Cesari.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Rossano Cesari; Eric S. Martin; George A. Calin; Francesca Pentimalli; Roberta Bichi; Holly McAdams; Francesco Trapasso; Alessandra Drusco; Masayoshi Shimizu; Valeria Masciullo; Giuseppina d'Andrilli; Giovanni Scambia; Maria Cristina Picchio; Hansjuerg Alder; Andrew K. Godwin; Carlo M. Croce
In an effort to identify tumor suppressor gene(s) associated with the frequent loss of heterozygosity observed on chromosome 6q25–q27, we constructed a contig derived from the sequences of bacterial artificial chromosome/P1 bacteriophage artificial chromosome clones defined by the genetic interval D6S1581–D6S1579–D6S305–D6S1599–D6S1008. Sequence analysis of this contig found it to contain eight known genes, including the complete genomic structure of the Parkin gene. Loss of heterozygosity (LOH) analysis of 40 malignant breast and ovarian tumors identified a common minimal region of loss, including the markers D6S305 (50%) and D6S1599 (32%). Both loci exhibited the highest frequencies of LOH in this study and are each located within the Parkin genomic structure. Whereas mutation analysis revealed no missense substitutions, expression of the Parkin gene appeared to be down-regulated or absent in the tumor biopsies and tumor cell lines examined. In addition, the identification of two truncating deletions in 3 of 20 ovarian tumor samples, as well as homozygous deletion of exon 2 in the lung adenocarcinoma cell lines Calu-3 and H-1573, supports the hypothesis that hemizygous or homozygous deletions are responsible for the abnormal expression of Parkin in these samples. These data suggest that the LOH observed at chromosome 6q25–q26 may contribute to the initiation and/or progression of cancer by inactivating or reducing the expression of the Parkin gene. Because Parkin maps to FRA6E, one of the most active common fragile sites in the human genome, it represents another example of a large tumor suppressor gene, like FHIT and WWOX, located at a common fragile site.
Clinical Cancer Research | 2004
Tamotsu Kuroki; Sai Yendamuri; Francesco Trapasso; Ayumi Matsuyama; Rami I. Aqeilan; Hansjuerg Alder; Shashi Rattan; Rossano Cesari; Maria L. Nolli; Noel N. Williams; Masaki Mori; Takashi Kanematsu; Carlo M. Croce
Purpose: WWOX (WW domain containing oxidoreductase) is a tumor suppressor gene that maps to the common fragile site FRA16D. We showed previously that WWOX is frequently altered in human lung and esophageal cancers. The purpose of this study was to delineate more precisely the role of WWOX in pancreatic carcinogenesis. Experimental Design: We analyzed 15 paired pancreatic adenocarcinoma samples and 9 pancreatic cancer cell lines for WWOX alterations. Colony assay and cell cycle analysis were also performed to evaluate the role of the WWOX as a tumor suppressor gene. Results: Loss of heterozygosity at the WWOX locus was observed in 4 primary tumors (27%). Methylation analysis showed that site-specific promoter hypermethylation was detected in 2 cell lines (22%) and treatment with the demethylating agent 5-aza-2′-deoxycytidine demonstrated an increase in the expression of WWOX. In addition, 2 primary tumor samples (13%) showed promoter hypermethylation including the position of site-specific methylation. Transcripts missing WWOX exons were detected in 4 cell lines (44%) and in 2 tumor samples (13%). Real-time reverse transcription PCR revealed a significant reduction of WWOX expression in all of the cell lines and in 6 primary tumors (40%). Western blot analysis showed a significant reduction of the WWOX protein in all of the cell lines. Furthermore, transfection with WWOX inhibited colony formation of pancreatic cancer cell lines by triggering apoptosis. Conclusion: These results indicate that the WWOX gene may play an important role in pancreatic tumor development.
Clinical Cancer Research | 2004
Maria Cristina Picchio; Eric S. Martin; Rossano Cesari; George A. Calin; Sai Yendamuri; Tamotsu Kuroki; Francesca Pentimalli; Manuela Sarti; Kristine E. Yoder; Larry R. Kaiser; Richard Fishel; Carlo M. Croce
Purpose: Parkin, a gene mutated in autosomal recessive juvenile Parkinsonism and mapped to the common fragile site FRA6E on human chromosome 6q25-q27, is associated with a frequent loss of heterozygosity and altered expression in breast and ovarian carcinomas. In addition, homozygous deletions of exon 2 creating deleterious truncations of the Parkin transcript were observed in the lung adenocarcinoma cell lines Calu-3 and H-1573, suggesting that the loss of this locus and the resulting changes in its expression are involved in the development of these tumors. Experimental Design: We examined 20 paired normal and non-small cell lung cancer samples for the presence of Parkin alterations in the coding sequence and changes in gene expression. We also restored gene expression in the Parkin-deficient lung carcinoma cell line H460 by use of a recombinant lentivirus containing the wild-type Parkin cDNA. Results: Loss of heterozygosity analysis identified a common region of loss in the Parkin/FRA6E locus with the highest frequency for the intragenic marker D6S1599 (45%), and semi-quantitative reverse transcription-PCR revealed reduced expression in 3 of 9 (33%) lung tumors. Although we did not observe any in vitro changes in cell proliferation or cell cycle, ectopic Parkin expression had the ability to reduce in vivo tumorigenicity in nude mice. Conclusion: These data suggest that Parkin is a tumor suppressor gene whose inactivation may play an important role in non-small cell lung cancer tumorigenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Annarita Miccio; Rossano Cesari; Francesco Lotti; Claudia Rossi; Francesca Sanvito; Maurilio Ponzoni; Samantha Routledge; Cheok Man Chow; Michael Antoniou; Giuliana Ferrari
Gene therapy for β-thalassemia requires stable transfer of a β-globin gene into hematopoietic stem cells (HSCs) and high and regulated hemoglobin expression in the erythroblastic progeny. We developed an erythroid-specific lentiviral vector driving the expression of the human β-globin gene from a minimal promoter/enhancer element containing two hypersensitive sites from the β-globin locus control region. Transplantation of transduced HSCs into thalassemic mice leads to stable and long-term correction of anemia with all red blood cells expressing the transgene. A frequency of 30–50% of transduced HSCs, harboring an average vector copy number per cell of 1, was sufficient to fully correct the thalassemic phenotype. In the mouse model of Cooleys anemia transplantation of transduced cells rescues lethality, leading to either a normal or a thalassemia intermedia phenotype. We show that genetically corrected erythroblasts undergo in vivo selection with preferential survival of progenitors harboring proviral integrations in genome sites more favorable to high levels of vector-derived expression. These data provide a rationale for a gene therapy approach to β-thalassemia based on partially myeloablative transplantation protocols.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Eric S. Martin; Rossano Cesari; Francesca Pentimalli; Kristine E. Yoder; Richard Fishel; Andrew L. Himelstein; S. Eric Martin; Andrew K. Godwin; Massimo Negrini; Carlo M. Croce
Frequent allelic loss at human chromosome 11q23-q24 occurs in a wide variety of cancers, suggesting that this region may harbor a tumor suppressor gene. By constructing a physical map of the LOH11CR2 minimal region of loss on 11q23-q24 associated with lung and breast carcinomas, we were able to clone a hereditary translocation, t(11;12)(q23;q24), in a patient with early-onset breast cancer and family history of cancer. The breakpoint was found within 6 kb of the BCSC-1 candidate tumor suppressor gene located in the LOH11CR2 region whereas additional loss of heterozygosity (LOH) analysis in breast and ovarian tumors, including that of the patient with the t(11;12)(q23;q24), implicated the BCSC-1 locus as the primary target of deletion. Northern analysis of the BCSC-1 mRNA revealed a lack of expression in 33 of 41 (80%) tumor cell lines, and its ectopic expression led to the suppression of colony formation in vitro and tumorigenicity in vivo. These data suggest that BCSC-1 may exert a tumor suppressor activity and is a likely target of the LOH observed on 11q23-q24 in cancer.
Cancer Gene Therapy | 2004
Francesco Trapasso; Manuela Sarti; Rossano Cesari; Sai Yendamuri; Kristoffel R. Dumon; Rami I. Aqeilan; Francesca Pentimalli; Luisa Infante; Hansjuerg Alder; Nobutsugu Abe; Takashi Watanabe; Giuseppe Viglietto; Carlo M. Croce; Alfredo Fusco
Pancreatic carcinoma is one of the most aggressive tumors, and, being refractory to conventional therapies, is an excellent target for new therapeutic approaches. Based on our previous finding of high HMGA1 expression in pancreatic cancer cells compared to normal pancreatic tissue, we evaluated whether suppression of HMGA1 protein expression could be a treatment option for patients affected by pancreatic cancer. Here we report that HMGA1 proteins are overexpressed in pancreatic carcinoma cell lines, and their downregulation through an adenovirus carrying the HMGA1 gene in an antisense orientation (Ad Yas-GFP) results in the death of three human pancreatic carcinoma cell lines (PANC1, Hs766T and PSN1). Pretreatment of PANC1 and PSN1 cells with Ad Yas-GFP suppressed and reduced, respectively, their ability to form xenograft tumors in nude mice. To further verify the role of HMGA1 in pancreatic tumorigenesis, we used a HMGA1 antisense phosphorothioate oligodeoxynucleotide (ODN); its addition induced a decrease in HMGA1 protein levels and a significant reduction of the proliferation rate of PANC1-, Hs766T- and PSN1-treated cells. Therefore, suppression of HMGA1 protein synthesis by an HMGA1 antisense approach seems to be a feasible treatment strategy in pancreatic carcinomas.
European Journal of Cancer | 2008
Francesca Pentimalli; Dario Palmieri; Roberto Pacelli; Corrado Garbi; Rossano Cesari; Eric Martin; Giovanna Maria Pierantoni; Paolo Chieffi; Carlo M. Croce; Vincenzo Costanzo; Monica Fedele; Alfredo Fusco
The high mobility group HMGA1 protein belongs to a family of architectural factors that play a role in chromosomal organisation and gene transcription regulation. HMGA1 overexpression represents a common feature of human malignant tumours and is causally associated with neoplastic transformation and metastatic progression. Recently, HMGA1 expression has been correlated with the presence of chromosomal rearrangements and suggested to promote genomic instability. Here, we report a novel interaction between HMGA1 protein and the ataxia-telangiectasia mutated (ATM) kinase, the major key player in the cellular response to DNA damage caused by several agents such as ionising radiation (IR). We identified an SQ motif on HMGA1, which is effectively phosphorylated by ATM in vitro and in vivo. Interestingly, confocal microscopy revealed that HMGA1 colocalises with the activated form of ATM (ATM S1981p). Moreover, HMGA1 ectopic expression decreases cell survival following exposure to IR as assessed by clonogenic survival in MCF-7 cells, further supporting the hypothesis that HMGA1 might act as a downstream target of the ATM pathway in response to DNA damage.
Clinical Cancer Research | 2004
Andrea Vecchione; Cinzia Sevignani; Enrico Giarnieri; Nicola Zanesi; Hideshi Ishii; Rossano Cesari; Louise Y.Y. Fong; Leonard G. Gomella; Carlo M. Croce; Raffaele Baffa
The fragile histidine triad (FHIT) gene located on chromosome 3p14.2 is frequently deleted in human tumors. We have previously reported deletions at the FHIT locus in 50% of bladder carcinoma derived cell lines and reduced expression in 61% of primary transitional carcinomas of the urinary bladder. To additionally investigate the role of FHIT alterations in the development of bladder cancer, we used heterozygous and nullizygous Fhit-deficient mice in a chemically induced carcinogenesis model. Results showed that 8 of 28 (28%) and 6 of 13 (46%) of the Fhit −/− and +/−, respectively, versus 2 of 25 (8%) Fhit +/+ mice developed invasive carcinoma after treatment with N-butyl-N-(4-hydroxybutyl) nitrosamine. To explore the possibility of a FHIT-based gene therapy for bladder cancer, we studied the effects of restored Fhit protein expression on cell proliferation, cell kinetics, and tumorigenicity in BALB/c nude mice, with human SW780 Fhit-null transitional carcinoma derived cells. In vitro transduction of SW780 Fhit-negative cells with adenoviral-FHIT inhibited cell growth, increased apoptotic cell population, and suppressed s.c. tumor growth in nude mice. These findings suggest the important role of Fhit in bladder cancer development and support the effort to additionally investigate a FHIT-based gene therapy.
Cancer Research | 2007
Sai Yendamuri; Francesco Trapasso; Manuela Ferracin; Rossano Cesari; Cinzia Sevignani; Masayoshi Shimizu; Shashi Rattan; Tamotsu Kuroki; Kristoffel R. Dumon; Florencia Bullrich; Chang Gong Liu; Massimo Negrini; Noel N. Williams; Larry R. Kaiser; Carlo M. Croce; George A. Calin
ARLTS1 is a newly characterized tumor suppressor gene located at chromosome 13q14.3 and involved in the pathogenesis of various types of tumors: two single-nucleotide polymorphisms, one of them responsible for protein truncation, were found statistically associated with familial malignancies, whereas DNA hypermethylation and genomic deletions have been identified as a mechanism of ARLTS1 down-regulation in sporadic cancers. We found that in a large portion of lung carcinomas (37%) and in all analyzed lung cancer cell lines, ARLTS1 is strongly down-regulated due to DNA methylation in its promoter region. After its restoration by adenoviral transduction, ARLTS1-negative A549 and H1299 cells underwent apoptosis and inhibition of cell growth. Furthermore, ARLTS1 reexpression significantly reduced the ability of A549 and H1299 to form tumors in nude mice. Finally, we identified approximately 650 transcripts differentially expressed after restoration of ARLTS1 expression in A549 cells, suggesting that various pathways involved in cell survival, proliferation, signaling, and development mediate the effects of wild-type ARLTS1 in a lung cancer system.
Cancer Research | 2003
Cinzia Sevignani; George A. Calin; Rossano Cesari; Manuela Sarti; Hideshi Ishii; Sai Yendamuri; Andrea Vecchione; Francesco Trapasso; Carlo M. Croce